Aifei Du, Shaohua Feng, Xuan Zhou, Yiyin Li, Shangqing Lu, Bangyuan Wu
{"title":"经呼吸道摄入NiCl2对小鼠抗氧化能力、肺及微量元素含量的影响。","authors":"Aifei Du, Shaohua Feng, Xuan Zhou, Yiyin Li, Shangqing Lu, Bangyuan Wu","doi":"10.1007/s12011-025-04630-0","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined the acute respiratory toxicity of NiCl<sub>2</sub> in mice, focusing on oxidative stress, tissue damage, and trace element dysregulation. Forty male KM mice were allocated to a saline control group and three NiCl<sub>2</sub> exposure groups (20, 60, 115 mg/kg; n = 10/group). Serum analysis assessed oxidative stress (MDA, GSH, SOD), liver (AST, ALT), kidney (Cr, BUN) function, and TP. Lung and tracheal tissues were examined for histopathological/ultrastructural pathological changes and apoptosis. Tissue levels of Ni, Zn, Cu, Fe, Ca, Mg, and Mn were measured using spectrophotometry. Results revealed dose-responsive elevations in serum AST, ALT, BUN, Cr, and MDA, accompanied by diminished GSH, TP, and T-SOD (P < 0.05). Nickel exposure caused tracheal pseudostratified columnar epithelium detachment, alveolar structural wall thickening and widened septa, capillary congestion, mitochondrial swelling in alveolar type-II cells, and increased pulmonary apoptosis (P < 0.05). Ni accumulated predominantly in the liver, lung, and kidney, with concurrent Zn upregulation and Cu/Fe depletion (P < 0.05), while Ca, Mg, and Mn levels remained stable. These findings demonstrate that acute NiCl<sub>2</sub> inhalation induces oxidative stress, impairs liver/kidney function, and provokes pulmonary apoptosis and mitochondrial damage. Ni disrupted Cu/Zn/Fe homeostasis but exhibited negligible effects on Ca, Mg, or Mn metabolism.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of NiCl2 Intake Through Respiratory Tract on Antioxidant Capacity, Lung, and Trace Element Content in Mice.\",\"authors\":\"Aifei Du, Shaohua Feng, Xuan Zhou, Yiyin Li, Shangqing Lu, Bangyuan Wu\",\"doi\":\"10.1007/s12011-025-04630-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study examined the acute respiratory toxicity of NiCl<sub>2</sub> in mice, focusing on oxidative stress, tissue damage, and trace element dysregulation. Forty male KM mice were allocated to a saline control group and three NiCl<sub>2</sub> exposure groups (20, 60, 115 mg/kg; n = 10/group). Serum analysis assessed oxidative stress (MDA, GSH, SOD), liver (AST, ALT), kidney (Cr, BUN) function, and TP. Lung and tracheal tissues were examined for histopathological/ultrastructural pathological changes and apoptosis. Tissue levels of Ni, Zn, Cu, Fe, Ca, Mg, and Mn were measured using spectrophotometry. Results revealed dose-responsive elevations in serum AST, ALT, BUN, Cr, and MDA, accompanied by diminished GSH, TP, and T-SOD (P < 0.05). Nickel exposure caused tracheal pseudostratified columnar epithelium detachment, alveolar structural wall thickening and widened septa, capillary congestion, mitochondrial swelling in alveolar type-II cells, and increased pulmonary apoptosis (P < 0.05). Ni accumulated predominantly in the liver, lung, and kidney, with concurrent Zn upregulation and Cu/Fe depletion (P < 0.05), while Ca, Mg, and Mn levels remained stable. These findings demonstrate that acute NiCl<sub>2</sub> inhalation induces oxidative stress, impairs liver/kidney function, and provokes pulmonary apoptosis and mitochondrial damage. Ni disrupted Cu/Zn/Fe homeostasis but exhibited negligible effects on Ca, Mg, or Mn metabolism.</p>\",\"PeriodicalId\":8917,\"journal\":{\"name\":\"Biological Trace Element Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Trace Element Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-025-04630-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-025-04630-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of NiCl2 Intake Through Respiratory Tract on Antioxidant Capacity, Lung, and Trace Element Content in Mice.
This study examined the acute respiratory toxicity of NiCl2 in mice, focusing on oxidative stress, tissue damage, and trace element dysregulation. Forty male KM mice were allocated to a saline control group and three NiCl2 exposure groups (20, 60, 115 mg/kg; n = 10/group). Serum analysis assessed oxidative stress (MDA, GSH, SOD), liver (AST, ALT), kidney (Cr, BUN) function, and TP. Lung and tracheal tissues were examined for histopathological/ultrastructural pathological changes and apoptosis. Tissue levels of Ni, Zn, Cu, Fe, Ca, Mg, and Mn were measured using spectrophotometry. Results revealed dose-responsive elevations in serum AST, ALT, BUN, Cr, and MDA, accompanied by diminished GSH, TP, and T-SOD (P < 0.05). Nickel exposure caused tracheal pseudostratified columnar epithelium detachment, alveolar structural wall thickening and widened septa, capillary congestion, mitochondrial swelling in alveolar type-II cells, and increased pulmonary apoptosis (P < 0.05). Ni accumulated predominantly in the liver, lung, and kidney, with concurrent Zn upregulation and Cu/Fe depletion (P < 0.05), while Ca, Mg, and Mn levels remained stable. These findings demonstrate that acute NiCl2 inhalation induces oxidative stress, impairs liver/kidney function, and provokes pulmonary apoptosis and mitochondrial damage. Ni disrupted Cu/Zn/Fe homeostasis but exhibited negligible effects on Ca, Mg, or Mn metabolism.
期刊介绍:
Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.