Dávid Somogyvári, Mária Mörtl, Anna Farkas, András Székács, János Győri
{"title":"急性接触噻虫啉和Calypso®后杀人虾的生化和行为反应。","authors":"Dávid Somogyvári, Mária Mörtl, Anna Farkas, András Székács, János Győri","doi":"10.1007/s00244-025-01130-z","DOIUrl":null,"url":null,"abstract":"<p><p>Neonicotinoids are insecticides that are used globally and can persist in soil and surface water, posing a threat to ecosystems. In this study, we exposed the invasive freshwater amphipod Dikerogammarus villosus to environmentally relevant and relatively high concentrations of thiacloprid, a widely used agricultural neonicotinoid active ingredient and its commercial form Calypso® for two days. The acute effects were investigated at the behavioral (immobility time) and biochemical [glutathione S-transferase (GST) and acetylcholine esterase (AChE) activity] levels. Calypso® concentrations of 10 µg/l and 100 µg/l a significantly increased the immobility time, while thiacloprid exerted such an effect only at 100 µg/l. The GST enzyme activity did not change in the thiacloprid-treated groups; however, the 10 µg/l and 100 µg/l Calypso® concentrations significantly increased the GST activity. All Calypso® concentrations significantly decreased AChE activity until the highest Calypso® concentration was reached, and an interesting outcome was the 'U-shaped dynamics' of AChE activity. In contrast, thiacloprid had no significant blocking effect on AChE activity at any of the concentrations tested. Neonicotinoid insecticides are neurotoxins that selectively target nicotinic acetylcholine receptors in the insect central nervous system. However, their widespread use has a growing impact on nontarget animals. This study confirms the risk of neonicotinoids to aquatic invertebrates by providing evidence that neonicotinoids can also affect both behavioral and biochemical processes in D. villosus.</p>","PeriodicalId":8377,"journal":{"name":"Archives of Environmental Contamination and Toxicology","volume":" ","pages":"407-418"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126362/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biochemical and Behavioral Responses in the Killer Shrimp Dikerogammarus villosus Following Acute Exposure to Thiacloprid and Calypso®.\",\"authors\":\"Dávid Somogyvári, Mária Mörtl, Anna Farkas, András Székács, János Győri\",\"doi\":\"10.1007/s00244-025-01130-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neonicotinoids are insecticides that are used globally and can persist in soil and surface water, posing a threat to ecosystems. In this study, we exposed the invasive freshwater amphipod Dikerogammarus villosus to environmentally relevant and relatively high concentrations of thiacloprid, a widely used agricultural neonicotinoid active ingredient and its commercial form Calypso® for two days. The acute effects were investigated at the behavioral (immobility time) and biochemical [glutathione S-transferase (GST) and acetylcholine esterase (AChE) activity] levels. Calypso® concentrations of 10 µg/l and 100 µg/l a significantly increased the immobility time, while thiacloprid exerted such an effect only at 100 µg/l. The GST enzyme activity did not change in the thiacloprid-treated groups; however, the 10 µg/l and 100 µg/l Calypso® concentrations significantly increased the GST activity. All Calypso® concentrations significantly decreased AChE activity until the highest Calypso® concentration was reached, and an interesting outcome was the 'U-shaped dynamics' of AChE activity. In contrast, thiacloprid had no significant blocking effect on AChE activity at any of the concentrations tested. Neonicotinoid insecticides are neurotoxins that selectively target nicotinic acetylcholine receptors in the insect central nervous system. However, their widespread use has a growing impact on nontarget animals. This study confirms the risk of neonicotinoids to aquatic invertebrates by providing evidence that neonicotinoids can also affect both behavioral and biochemical processes in D. villosus.</p>\",\"PeriodicalId\":8377,\"journal\":{\"name\":\"Archives of Environmental Contamination and Toxicology\",\"volume\":\" \",\"pages\":\"407-418\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12126362/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Environmental Contamination and Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00244-025-01130-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Environmental Contamination and Toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00244-025-01130-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biochemical and Behavioral Responses in the Killer Shrimp Dikerogammarus villosus Following Acute Exposure to Thiacloprid and Calypso®.
Neonicotinoids are insecticides that are used globally and can persist in soil and surface water, posing a threat to ecosystems. In this study, we exposed the invasive freshwater amphipod Dikerogammarus villosus to environmentally relevant and relatively high concentrations of thiacloprid, a widely used agricultural neonicotinoid active ingredient and its commercial form Calypso® for two days. The acute effects were investigated at the behavioral (immobility time) and biochemical [glutathione S-transferase (GST) and acetylcholine esterase (AChE) activity] levels. Calypso® concentrations of 10 µg/l and 100 µg/l a significantly increased the immobility time, while thiacloprid exerted such an effect only at 100 µg/l. The GST enzyme activity did not change in the thiacloprid-treated groups; however, the 10 µg/l and 100 µg/l Calypso® concentrations significantly increased the GST activity. All Calypso® concentrations significantly decreased AChE activity until the highest Calypso® concentration was reached, and an interesting outcome was the 'U-shaped dynamics' of AChE activity. In contrast, thiacloprid had no significant blocking effect on AChE activity at any of the concentrations tested. Neonicotinoid insecticides are neurotoxins that selectively target nicotinic acetylcholine receptors in the insect central nervous system. However, their widespread use has a growing impact on nontarget animals. This study confirms the risk of neonicotinoids to aquatic invertebrates by providing evidence that neonicotinoids can also affect both behavioral and biochemical processes in D. villosus.
期刊介绍:
Archives of Environmental Contamination and Toxicology provides a place for the publication of timely, detailed, and definitive scientific studies pertaining to the source, transport, fate and / or effects of contaminants in the environment. The journal will consider submissions dealing with new analytical and toxicological techniques that advance our understanding of the source, transport, fate and / or effects of contaminants in the environment. AECT will now consider mini-reviews (where length including references is less than 5,000 words), which highlight case studies, a geographic topic of interest, or a timely subject of debate. AECT will also consider Special Issues on subjects of broad interest. The journal strongly encourages authors to ensure that their submission places a strong emphasis on ecosystem processes; submissions limited to technical aspects of such areas as toxicity testing for single chemicals, wastewater effluent characterization, human occupation exposure, or agricultural phytotoxicity are unlikely to be considered.