{"title":"硫酸亚铁和脂多糖共暴露诱导Wistar大鼠神经炎症、神经行为运动缺陷、神经退行性和与帕金森病样症状相关的组织病理学生物标志物。","authors":"Shivam Kumar Pandey, Anjuman Nanda, Avtar Singh Gautam, Apurva Chittoda, Aman Tiwari, Rakesh Kumar Singh","doi":"10.1007/s10534-025-00693-7","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra region of the brain. Although iron is one of the essential micronutrients in the brain, its excess exposure and accumulation in the brain substantia nigra and striatum regions may induce critical pathological changes relevant to PD. This study has evaluated neurobehavioral, biochemical, and structural alterations resembling PD-like symptoms induced through a 4-week co-exposure of ferrous sulfate (FeSO<sub>4</sub>) with lipopolysaccharide (LPS) in Wistar rats. Our results revealed motor deficits, oxidative stress, neuroinflammation, iron dysregulation, protein aggregation, ferroptosis, and apoptotic cell death. Notably, we observed decreased tyrosine hydroxylase levels and increased α-synuclein accumulation, consistent with PD pathology. The immunohistopathological assessments showed astrocyte activation and iron deposition, supporting their roles in neuroinflammation and oxidative stress. Furthermore, we identified alterations in apoptosis and ferroptosis markers, suggesting dose-related involvement of FeSO<sub>4</sub> in neuronal death in the rat brain. These findings have highlighted the multifaceted mechanisms during the co-exposure of FeSO<sub>4</sub> and LPS-induced neurodegeneration and neuroinflammation relevant to PD. This study emphasizes that therapeutic targeting of these pathological mechanisms may offer a promising therapeutic intervention in PD.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferrous sulfate and lipopolysaccharide co-exposure induce neuroinflammation, neurobehavioral motor deficits, neurodegenerative and histopathological biomarkers relevant to Parkinson's disease-like symptoms in Wistar rats.\",\"authors\":\"Shivam Kumar Pandey, Anjuman Nanda, Avtar Singh Gautam, Apurva Chittoda, Aman Tiwari, Rakesh Kumar Singh\",\"doi\":\"10.1007/s10534-025-00693-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra region of the brain. Although iron is one of the essential micronutrients in the brain, its excess exposure and accumulation in the brain substantia nigra and striatum regions may induce critical pathological changes relevant to PD. This study has evaluated neurobehavioral, biochemical, and structural alterations resembling PD-like symptoms induced through a 4-week co-exposure of ferrous sulfate (FeSO<sub>4</sub>) with lipopolysaccharide (LPS) in Wistar rats. Our results revealed motor deficits, oxidative stress, neuroinflammation, iron dysregulation, protein aggregation, ferroptosis, and apoptotic cell death. Notably, we observed decreased tyrosine hydroxylase levels and increased α-synuclein accumulation, consistent with PD pathology. The immunohistopathological assessments showed astrocyte activation and iron deposition, supporting their roles in neuroinflammation and oxidative stress. Furthermore, we identified alterations in apoptosis and ferroptosis markers, suggesting dose-related involvement of FeSO<sub>4</sub> in neuronal death in the rat brain. These findings have highlighted the multifaceted mechanisms during the co-exposure of FeSO<sub>4</sub> and LPS-induced neurodegeneration and neuroinflammation relevant to PD. This study emphasizes that therapeutic targeting of these pathological mechanisms may offer a promising therapeutic intervention in PD.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00693-7\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00693-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ferrous sulfate and lipopolysaccharide co-exposure induce neuroinflammation, neurobehavioral motor deficits, neurodegenerative and histopathological biomarkers relevant to Parkinson's disease-like symptoms in Wistar rats.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra region of the brain. Although iron is one of the essential micronutrients in the brain, its excess exposure and accumulation in the brain substantia nigra and striatum regions may induce critical pathological changes relevant to PD. This study has evaluated neurobehavioral, biochemical, and structural alterations resembling PD-like symptoms induced through a 4-week co-exposure of ferrous sulfate (FeSO4) with lipopolysaccharide (LPS) in Wistar rats. Our results revealed motor deficits, oxidative stress, neuroinflammation, iron dysregulation, protein aggregation, ferroptosis, and apoptotic cell death. Notably, we observed decreased tyrosine hydroxylase levels and increased α-synuclein accumulation, consistent with PD pathology. The immunohistopathological assessments showed astrocyte activation and iron deposition, supporting their roles in neuroinflammation and oxidative stress. Furthermore, we identified alterations in apoptosis and ferroptosis markers, suggesting dose-related involvement of FeSO4 in neuronal death in the rat brain. These findings have highlighted the multifaceted mechanisms during the co-exposure of FeSO4 and LPS-induced neurodegeneration and neuroinflammation relevant to PD. This study emphasizes that therapeutic targeting of these pathological mechanisms may offer a promising therapeutic intervention in PD.
期刊介绍:
BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of:
- metal ions
- metal chelates,
- siderophores,
- metal-containing proteins
- biominerals in all biosystems.
- BioMetals rapidly publishes original articles and reviews.
BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.