由无序引起的节结转换的出现。

IF 18.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ming Gong, Peng-Lu Zhao, Hai-Zhou Lu, Qian Niu, X C Xie
{"title":"由无序引起的节结转换的出现。","authors":"Ming Gong, Peng-Lu Zhao, Hai-Zhou Lu, Qian Niu, X C Xie","doi":"10.1016/j.scib.2025.04.061","DOIUrl":null,"url":null,"abstract":"<p><p>Under certain symmetries, degenerate points in three-dimensional metals form one-dimensional nodal lines. These nodal lines sometimes exhibit intricate knotted structures and have been studied in various contexts. As one of the most common physical perturbations, disorder effects often trigger novel quantum phase transitions. For nodal-knot phases, whether disorder can drive knot transitions remains an open and intriguing question. Employing renormalization-group calculations, we demonstrate that nodal-knot transitions emerge in the presence of weak disorder. Specifically, both chemical-potential-type and magnetic-type disorders can induce knot transitions, resulting in the emergence of distinct knot topologies. The transition can be quantitatively characterized by changes in topological invariants such as the knot Wilson loop integrals. Our findings open up a new avenue for manipulating the topology of nodal-knot phases through disorder effects.</p>","PeriodicalId":421,"journal":{"name":"Science Bulletin","volume":" ","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emergence of nodal-knot transitions by disorder.\",\"authors\":\"Ming Gong, Peng-Lu Zhao, Hai-Zhou Lu, Qian Niu, X C Xie\",\"doi\":\"10.1016/j.scib.2025.04.061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Under certain symmetries, degenerate points in three-dimensional metals form one-dimensional nodal lines. These nodal lines sometimes exhibit intricate knotted structures and have been studied in various contexts. As one of the most common physical perturbations, disorder effects often trigger novel quantum phase transitions. For nodal-knot phases, whether disorder can drive knot transitions remains an open and intriguing question. Employing renormalization-group calculations, we demonstrate that nodal-knot transitions emerge in the presence of weak disorder. Specifically, both chemical-potential-type and magnetic-type disorders can induce knot transitions, resulting in the emergence of distinct knot topologies. The transition can be quantitatively characterized by changes in topological invariants such as the knot Wilson loop integrals. Our findings open up a new avenue for manipulating the topology of nodal-knot phases through disorder effects.</p>\",\"PeriodicalId\":421,\"journal\":{\"name\":\"Science Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Bulletin\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.scib.2025.04.061\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Bulletin","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.scib.2025.04.061","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在一定的对称性下,三维金属中的简并点形成一维的节点线。这些节点线有时表现出复杂的结状结构,并在各种情况下进行了研究。作为最常见的物理扰动之一,无序效应经常引发新的量子相变。对于节-结阶段,无序是否可以驱动结转变仍然是一个开放和有趣的问题。利用重整化群计算,我们证明了在弱无序存在的情况下,节点-结跃迁会出现。具体来说,化学势型和磁型紊乱都可以诱导结转变,导致不同结拓扑的出现。这种转变可以通过拓扑不变量的变化来定量表征,例如结威尔逊环积分。我们的发现为通过无序效应操纵节结相的拓扑开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emergence of nodal-knot transitions by disorder.

Under certain symmetries, degenerate points in three-dimensional metals form one-dimensional nodal lines. These nodal lines sometimes exhibit intricate knotted structures and have been studied in various contexts. As one of the most common physical perturbations, disorder effects often trigger novel quantum phase transitions. For nodal-knot phases, whether disorder can drive knot transitions remains an open and intriguing question. Employing renormalization-group calculations, we demonstrate that nodal-knot transitions emerge in the presence of weak disorder. Specifically, both chemical-potential-type and magnetic-type disorders can induce knot transitions, resulting in the emergence of distinct knot topologies. The transition can be quantitatively characterized by changes in topological invariants such as the knot Wilson loop integrals. Our findings open up a new avenue for manipulating the topology of nodal-knot phases through disorder effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Bulletin
Science Bulletin MULTIDISCIPLINARY SCIENCES-
CiteScore
24.60
自引率
2.10%
发文量
8092
期刊介绍: Science Bulletin (Sci. Bull., formerly known as Chinese Science Bulletin) is a multidisciplinary academic journal supervised by the Chinese Academy of Sciences (CAS) and co-sponsored by the CAS and the National Natural Science Foundation of China (NSFC). Sci. Bull. is a semi-monthly international journal publishing high-caliber peer-reviewed research on a broad range of natural sciences and high-tech fields on the basis of its originality, scientific significance and whether it is of general interest. In addition, we are committed to serving the scientific community with immediate, authoritative news and valuable insights into upcoming trends around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信