利用光引发剂集成上转换粒子作为纳米引发剂增强近红外光介导的水凝胶固化用于生物3D打印。

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiong Xiao, Ziwei Huang, Hongying Duan, Liping Yang, Yuchu Yang, Yushang Lai, Chenxi Li, Li Feng
{"title":"利用光引发剂集成上转换粒子作为纳米引发剂增强近红外光介导的水凝胶固化用于生物3D打印。","authors":"Xiong Xiao, Ziwei Huang, Hongying Duan, Liping Yang, Yuchu Yang, Yushang Lai, Chenxi Li, Li Feng","doi":"10.1021/acs.biomac.4c01775","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo three-dimensional (3D) bioprinting is a promising strategy that can enable personalized organ repair with minimal injury. The current in vivo 3D bioprinting based on upconversion nanoparticles (UCNPs) mediating near-infrared (NIR) light curing is still limited by the low hydrogel cross-linking efficiency. Herein, we introduced a bioink system that allows enhanced NIR light curing by utilizing thiol-ene cross-linkable polymers and photoinitiator-modified UCNPs@LAP nano initiator. The norbornene functionalized hyaluronic acid (NorHA) and thiolated gelatin (GelSH) were first synthesized to prepare the thiol-ene polymer solution. Compared to radical cross-linkable gelatin methacryloyl (GelMA), the NorHA/GelSH exhibited much higher reactivity under weak photoinitiating conditions. With the addition of surface-modified UCNPs@LAP nano initiator, the bioinks showed improved NIR curing performances, which is beneficial to reduce potential thermal damage. Furthermore, in vitro evaluation showed that the NIR light-cured 3D scaffolds preserved excellent bioactivity, suggesting that the hybrid bioink holds great promise to serve as a candidate for in vivo 3D bioprinting.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Near-Infrared Light-Mediated Hydrogel Curing Using Photoinitiator Integrated Upconversion Particles as Nano Initiator for 3D Bioprinting.\",\"authors\":\"Xiong Xiao, Ziwei Huang, Hongying Duan, Liping Yang, Yuchu Yang, Yushang Lai, Chenxi Li, Li Feng\",\"doi\":\"10.1021/acs.biomac.4c01775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In vivo three-dimensional (3D) bioprinting is a promising strategy that can enable personalized organ repair with minimal injury. The current in vivo 3D bioprinting based on upconversion nanoparticles (UCNPs) mediating near-infrared (NIR) light curing is still limited by the low hydrogel cross-linking efficiency. Herein, we introduced a bioink system that allows enhanced NIR light curing by utilizing thiol-ene cross-linkable polymers and photoinitiator-modified UCNPs@LAP nano initiator. The norbornene functionalized hyaluronic acid (NorHA) and thiolated gelatin (GelSH) were first synthesized to prepare the thiol-ene polymer solution. Compared to radical cross-linkable gelatin methacryloyl (GelMA), the NorHA/GelSH exhibited much higher reactivity under weak photoinitiating conditions. With the addition of surface-modified UCNPs@LAP nano initiator, the bioinks showed improved NIR curing performances, which is beneficial to reduce potential thermal damage. Furthermore, in vitro evaluation showed that the NIR light-cured 3D scaffolds preserved excellent bioactivity, suggesting that the hybrid bioink holds great promise to serve as a candidate for in vivo 3D bioprinting.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01775\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01775","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

活体三维(3D)生物打印是一种很有前途的策略,可以在最小的损伤下实现个性化器官修复。目前,基于上转换纳米颗粒介导近红外(NIR)光固化的生物体内3D打印仍然受到低水凝胶交联效率的限制。在此,我们介绍了一种生物链接系统,通过使用巯基交联聚合物和光引发剂修饰的UCNPs@LAP纳米引发剂,可以增强近红外光固化。首次合成降冰片烯功能化透明质酸(NorHA)和巯基明胶(GelSH),制备巯基聚合物溶液。与自由基交联明胶甲基丙烯酰(GelMA)相比,NorHA/GelSH在弱光引发条件下表现出更高的反应活性。添加表面改性UCNPs@LAP纳米引发剂后,生物墨水的近红外固化性能得到改善,有利于减少潜在的热损伤。此外,体外评价表明,近红外光固化的3D支架保持了良好的生物活性,这表明这种混合生物墨水有望成为体内生物3D打印的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Near-Infrared Light-Mediated Hydrogel Curing Using Photoinitiator Integrated Upconversion Particles as Nano Initiator for 3D Bioprinting.

In vivo three-dimensional (3D) bioprinting is a promising strategy that can enable personalized organ repair with minimal injury. The current in vivo 3D bioprinting based on upconversion nanoparticles (UCNPs) mediating near-infrared (NIR) light curing is still limited by the low hydrogel cross-linking efficiency. Herein, we introduced a bioink system that allows enhanced NIR light curing by utilizing thiol-ene cross-linkable polymers and photoinitiator-modified UCNPs@LAP nano initiator. The norbornene functionalized hyaluronic acid (NorHA) and thiolated gelatin (GelSH) were first synthesized to prepare the thiol-ene polymer solution. Compared to radical cross-linkable gelatin methacryloyl (GelMA), the NorHA/GelSH exhibited much higher reactivity under weak photoinitiating conditions. With the addition of surface-modified UCNPs@LAP nano initiator, the bioinks showed improved NIR curing performances, which is beneficial to reduce potential thermal damage. Furthermore, in vitro evaluation showed that the NIR light-cured 3D scaffolds preserved excellent bioactivity, suggesting that the hybrid bioink holds great promise to serve as a candidate for in vivo 3D bioprinting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信