{"title":"协同多智能体强化学习中的语义关系图学习(GLSR)","authors":"Pengting Duan, Chao Wen, Baoping Wang, Zhenni Wang, Zhifang Wei","doi":"10.1155/int/4810561","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Prominent achievements of multiagent reinforcement learning (MARL) have been recognized in the last few years, but effective cooperation among agents remains a challenge. Traditional methods neglect the modeling of action semantic relations in the learning process of joint action latent representations. In other words, the uncertain semantic relations might hinder the learning of sophisticated cooperative relationships among actions, which may lead to homogeneous behaviors across all agents and their limited exploration efficiency. Our aim is to learn the structure of the action semantic space to improve the cooperation-aware representation for policy optimization of MARL. To achieve this, a scheme called graph learning of semantic relations (GLSR) is proposed, where action semantic embeddings and joint action representations are learned in a collaborative way. GLSR incorporates an action semantic encoder for capturing semantic relations in the action semantic space. By leveraging the cross-attention mechanism with action semantic embeddings, GLSR prompts the action semantic relations to guide mining the cooperation-aware joint action representations, implicitly facilitating agent cooperation in the joint policy space for more diverse behaviors of cooperative agents. The experimental results on challenging tasks demonstrate that GLSR attains state-of-the-art outcomes and shows robust performance in multiagent cooperative tasks.</p>\n </div>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":"2025 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4810561","citationCount":"0","resultStr":"{\"title\":\"Graph Learning of Semantic Relations (GLSR) for Cooperative Multiagent Reinforcement Learning\",\"authors\":\"Pengting Duan, Chao Wen, Baoping Wang, Zhenni Wang, Zhifang Wei\",\"doi\":\"10.1155/int/4810561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Prominent achievements of multiagent reinforcement learning (MARL) have been recognized in the last few years, but effective cooperation among agents remains a challenge. Traditional methods neglect the modeling of action semantic relations in the learning process of joint action latent representations. In other words, the uncertain semantic relations might hinder the learning of sophisticated cooperative relationships among actions, which may lead to homogeneous behaviors across all agents and their limited exploration efficiency. Our aim is to learn the structure of the action semantic space to improve the cooperation-aware representation for policy optimization of MARL. To achieve this, a scheme called graph learning of semantic relations (GLSR) is proposed, where action semantic embeddings and joint action representations are learned in a collaborative way. GLSR incorporates an action semantic encoder for capturing semantic relations in the action semantic space. By leveraging the cross-attention mechanism with action semantic embeddings, GLSR prompts the action semantic relations to guide mining the cooperation-aware joint action representations, implicitly facilitating agent cooperation in the joint policy space for more diverse behaviors of cooperative agents. The experimental results on challenging tasks demonstrate that GLSR attains state-of-the-art outcomes and shows robust performance in multiagent cooperative tasks.</p>\\n </div>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/int/4810561\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/int/4810561\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/int/4810561","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Graph Learning of Semantic Relations (GLSR) for Cooperative Multiagent Reinforcement Learning
Prominent achievements of multiagent reinforcement learning (MARL) have been recognized in the last few years, but effective cooperation among agents remains a challenge. Traditional methods neglect the modeling of action semantic relations in the learning process of joint action latent representations. In other words, the uncertain semantic relations might hinder the learning of sophisticated cooperative relationships among actions, which may lead to homogeneous behaviors across all agents and their limited exploration efficiency. Our aim is to learn the structure of the action semantic space to improve the cooperation-aware representation for policy optimization of MARL. To achieve this, a scheme called graph learning of semantic relations (GLSR) is proposed, where action semantic embeddings and joint action representations are learned in a collaborative way. GLSR incorporates an action semantic encoder for capturing semantic relations in the action semantic space. By leveraging the cross-attention mechanism with action semantic embeddings, GLSR prompts the action semantic relations to guide mining the cooperation-aware joint action representations, implicitly facilitating agent cooperation in the joint policy space for more diverse behaviors of cooperative agents. The experimental results on challenging tasks demonstrate that GLSR attains state-of-the-art outcomes and shows robust performance in multiagent cooperative tasks.
期刊介绍:
The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.