用于增强太阳能收集的Noble Cs2HfInBr6的压力诱导物理和光电子特性

IF 4.3 3区 工程技术 Q2 ENERGY & FUELS
Rifat Sarker Apu, Nazmul Hasan, M. Hussayeen Khan Anik, Mohammed Mehedi Hasan, M. Arifuzzaman, M. Harunur Rashid, Alamgir Kabir
{"title":"用于增强太阳能收集的Noble Cs2HfInBr6的压力诱导物理和光电子特性","authors":"Rifat Sarker Apu,&nbsp;Nazmul Hasan,&nbsp;M. Hussayeen Khan Anik,&nbsp;Mohammed Mehedi Hasan,&nbsp;M. Arifuzzaman,&nbsp;M. Harunur Rashid,&nbsp;Alamgir Kabir","doi":"10.1155/er/9913604","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Exploring advanced materials for energy device applications is paramount for efficient and sustainable energy solutions. Here, density functional theory (DFT)-based simulations are carried out to systematically investigate the physical properties of a noble hafnium (Hf)–indium (In)-based Cs<sub>2</sub>HfInBr<sub>6</sub> halide double perovskite (HDP). We demonstrate that pressure-induced lattice confinement leads to significant changes in structural and electronic properties, resulting in transitions from semiconductor to metallic phases simultaneously direct to indirect band gap transition. Tunable electronic properties of the proposed Cs<sub>2</sub>HfInBr<sub>6</sub> perovskite portray advantageous light–matter interaction behavior, which suits this material for advanced optoelectronic devices and biomedical applications. DFT-simulated physical behavior modeled with the finite difference time domain (FDTD) theoretical device modeling the Cs<sub>2</sub>HfInBr<sub>6</sub> solar cell demonstrates excellent power conversion efficiency of up to 27.5% with a single crystal in the planar cell under 7 GPa external pressure. This study advances energy and device engineering research by setting Cs<sub>2</sub>HfInBr<sub>6</sub> double perovskite as a promising contender for future renewable energy technology. Moreover, its unique electronic properties of multiferroic Hf─In combinations in perovskites research would pave the exciting opportunities for advancing the next generation of electronics.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/9913604","citationCount":"0","resultStr":"{\"title\":\"Pressure-Induced Physical and Optoelectronic Properties of Noble Cs2HfInBr6 for Enhanced Solar Energy Harvesting\",\"authors\":\"Rifat Sarker Apu,&nbsp;Nazmul Hasan,&nbsp;M. Hussayeen Khan Anik,&nbsp;Mohammed Mehedi Hasan,&nbsp;M. Arifuzzaman,&nbsp;M. Harunur Rashid,&nbsp;Alamgir Kabir\",\"doi\":\"10.1155/er/9913604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Exploring advanced materials for energy device applications is paramount for efficient and sustainable energy solutions. Here, density functional theory (DFT)-based simulations are carried out to systematically investigate the physical properties of a noble hafnium (Hf)–indium (In)-based Cs<sub>2</sub>HfInBr<sub>6</sub> halide double perovskite (HDP). We demonstrate that pressure-induced lattice confinement leads to significant changes in structural and electronic properties, resulting in transitions from semiconductor to metallic phases simultaneously direct to indirect band gap transition. Tunable electronic properties of the proposed Cs<sub>2</sub>HfInBr<sub>6</sub> perovskite portray advantageous light–matter interaction behavior, which suits this material for advanced optoelectronic devices and biomedical applications. DFT-simulated physical behavior modeled with the finite difference time domain (FDTD) theoretical device modeling the Cs<sub>2</sub>HfInBr<sub>6</sub> solar cell demonstrates excellent power conversion efficiency of up to 27.5% with a single crystal in the planar cell under 7 GPa external pressure. This study advances energy and device engineering research by setting Cs<sub>2</sub>HfInBr<sub>6</sub> double perovskite as a promising contender for future renewable energy technology. Moreover, its unique electronic properties of multiferroic Hf─In combinations in perovskites research would pave the exciting opportunities for advancing the next generation of electronics.</p>\\n </div>\",\"PeriodicalId\":14051,\"journal\":{\"name\":\"International Journal of Energy Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/9913604\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Energy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/er/9913604\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/9913604","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

探索能源设备应用的先进材料对于高效和可持续的能源解决方案至关重要。本文基于密度泛函理论(DFT)进行了模拟,系统地研究了稀有铪(Hf) -铟(In)基Cs2HfInBr6卤化物双钙钛矿(HDP)的物理性质。我们证明了压力诱导的晶格约束导致结构和电子性能的显著变化,导致从半导体相到金属相的转变同时直接到间接带隙转变。所提出的Cs2HfInBr6钙钛矿的可调谐电子特性描绘了有利的光-物质相互作用行为,这适合该材料用于先进的光电器件和生物医学应用。采用时域有限差分(FDTD)理论器件模型对Cs2HfInBr6太阳能电池的物理行为进行了dft模拟,结果表明,在7 GPa外压下,单晶在平面电池内的功率转换效率高达27.5%。本研究通过将Cs2HfInBr6双钙钛矿作为未来可再生能源技术的有前途的竞争者,推进了能源和设备工程研究。此外,其在钙钛矿研究中的多铁Hf─In组合的独特电子特性将为推进下一代电子技术铺平令人兴奋的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pressure-Induced Physical and Optoelectronic Properties of Noble Cs2HfInBr6 for Enhanced Solar Energy Harvesting

Exploring advanced materials for energy device applications is paramount for efficient and sustainable energy solutions. Here, density functional theory (DFT)-based simulations are carried out to systematically investigate the physical properties of a noble hafnium (Hf)–indium (In)-based Cs2HfInBr6 halide double perovskite (HDP). We demonstrate that pressure-induced lattice confinement leads to significant changes in structural and electronic properties, resulting in transitions from semiconductor to metallic phases simultaneously direct to indirect band gap transition. Tunable electronic properties of the proposed Cs2HfInBr6 perovskite portray advantageous light–matter interaction behavior, which suits this material for advanced optoelectronic devices and biomedical applications. DFT-simulated physical behavior modeled with the finite difference time domain (FDTD) theoretical device modeling the Cs2HfInBr6 solar cell demonstrates excellent power conversion efficiency of up to 27.5% with a single crystal in the planar cell under 7 GPa external pressure. This study advances energy and device engineering research by setting Cs2HfInBr6 double perovskite as a promising contender for future renewable energy technology. Moreover, its unique electronic properties of multiferroic Hf─In combinations in perovskites research would pave the exciting opportunities for advancing the next generation of electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Energy Research
International Journal of Energy Research 工程技术-核科学技术
CiteScore
9.80
自引率
8.70%
发文量
1170
审稿时长
3.1 months
期刊介绍: The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability. IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents: -Biofuels and alternatives -Carbon capturing and storage technologies -Clean coal technologies -Energy conversion, conservation and management -Energy storage -Energy systems -Hybrid/combined/integrated energy systems for multi-generation -Hydrogen energy and fuel cells -Hydrogen production technologies -Micro- and nano-energy systems and technologies -Nuclear energy -Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass) -Smart energy system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信