直接驱动选择性顺应装配机械臂运动系统优化

IF 1.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhun Liu, Chentao Tang, Youtong Fang, Pierre-Daniel Pfister
{"title":"直接驱动选择性顺应装配机械臂运动系统优化","authors":"Zhun Liu,&nbsp;Chentao Tang,&nbsp;Youtong Fang,&nbsp;Pierre-Daniel Pfister","doi":"10.1049/elp2.70040","DOIUrl":null,"url":null,"abstract":"<p>A direct-drive selective compliance assembly robot arm (DDSCARA) poses difficulties in system optimisation due to numerous design parameters and strong coupling between components. This article presents a new optimisation framework based on the characteristic parameters surrogate model to solve the computation burden of the DDSCARA motion system optimisation. The framework divides the optimisation problem into three sub-optimisations. Firstly, we construct a characteristic parameters surrogate model of the direct-drive motor (DDM) by multi-objective optimisation to reduce the training dataset size at the component level. Secondly, in the system-level optimisation, we take the cost and reliability indicators as the optimisation objectives and obtain the optimal characteristic parameters of the DDMs, motion trajectory parameters, and design parameters of other components. A pre-optimisation of the DDM characteristic parameters using gradient descent is used to accelerate the convergence and improve optimisation results. Thirdly, the closest point method and Bayesian optimisation are used to recover the DDM design parameters. For the given optimisation problem, the new framework saves 97.7% computation time compared to the traditional framework. We design an optimised prototype and conduct comparative experiments with the original prototype. The optimised prototype achieves 33% and 12.5% improvements in reliability and unit production per hour, respectively.</p>","PeriodicalId":13352,"journal":{"name":"Iet Electric Power Applications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70040","citationCount":"0","resultStr":"{\"title\":\"Motion System Optimisation for Direct-Drive Selective Compliance Assembly Robot Arm\",\"authors\":\"Zhun Liu,&nbsp;Chentao Tang,&nbsp;Youtong Fang,&nbsp;Pierre-Daniel Pfister\",\"doi\":\"10.1049/elp2.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A direct-drive selective compliance assembly robot arm (DDSCARA) poses difficulties in system optimisation due to numerous design parameters and strong coupling between components. This article presents a new optimisation framework based on the characteristic parameters surrogate model to solve the computation burden of the DDSCARA motion system optimisation. The framework divides the optimisation problem into three sub-optimisations. Firstly, we construct a characteristic parameters surrogate model of the direct-drive motor (DDM) by multi-objective optimisation to reduce the training dataset size at the component level. Secondly, in the system-level optimisation, we take the cost and reliability indicators as the optimisation objectives and obtain the optimal characteristic parameters of the DDMs, motion trajectory parameters, and design parameters of other components. A pre-optimisation of the DDM characteristic parameters using gradient descent is used to accelerate the convergence and improve optimisation results. Thirdly, the closest point method and Bayesian optimisation are used to recover the DDM design parameters. For the given optimisation problem, the new framework saves 97.7% computation time compared to the traditional framework. We design an optimised prototype and conduct comparative experiments with the original prototype. The optimised prototype achieves 33% and 12.5% improvements in reliability and unit production per hour, respectively.</p>\",\"PeriodicalId\":13352,\"journal\":{\"name\":\"Iet Electric Power Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/elp2.70040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Electric Power Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70040\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Electric Power Applications","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/elp2.70040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

直接驱动选择柔性装配机械臂(DDSCARA)由于设计参数多,部件之间耦合强,给系统优化带来困难。为了解决DDSCARA运动系统优化的计算负担,提出了一种基于特征参数替代模型的优化框架。该框架将优化问题分为三个子优化。首先,通过多目标优化构建直驱电机(DDM)的特征参数代理模型,在部件层面减小训练数据集的大小;其次,在系统级优化中,以成本和可靠性指标为优化目标,获得ddm的最优特性参数、运动轨迹参数和其他部件的设计参数。采用梯度下降法对DDM特征参数进行预优化,加快了收敛速度,改善了优化结果。第三,采用最近点法和贝叶斯优化方法恢复DDM设计参数。对于给定的优化问题,新框架比传统框架节省了97.7%的计算时间。我们设计了一个优化的原型,并与原始原型进行了对比实验。优化后的原型在可靠性和每小时单位产量方面分别提高了33%和12.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion System Optimisation for Direct-Drive Selective Compliance Assembly Robot Arm

A direct-drive selective compliance assembly robot arm (DDSCARA) poses difficulties in system optimisation due to numerous design parameters and strong coupling between components. This article presents a new optimisation framework based on the characteristic parameters surrogate model to solve the computation burden of the DDSCARA motion system optimisation. The framework divides the optimisation problem into three sub-optimisations. Firstly, we construct a characteristic parameters surrogate model of the direct-drive motor (DDM) by multi-objective optimisation to reduce the training dataset size at the component level. Secondly, in the system-level optimisation, we take the cost and reliability indicators as the optimisation objectives and obtain the optimal characteristic parameters of the DDMs, motion trajectory parameters, and design parameters of other components. A pre-optimisation of the DDM characteristic parameters using gradient descent is used to accelerate the convergence and improve optimisation results. Thirdly, the closest point method and Bayesian optimisation are used to recover the DDM design parameters. For the given optimisation problem, the new framework saves 97.7% computation time compared to the traditional framework. We design an optimised prototype and conduct comparative experiments with the original prototype. The optimised prototype achieves 33% and 12.5% improvements in reliability and unit production per hour, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Electric Power Applications
Iet Electric Power Applications 工程技术-工程:电子与电气
CiteScore
4.80
自引率
5.90%
发文量
104
审稿时长
3 months
期刊介绍: IET Electric Power Applications publishes papers of a high technical standard with a suitable balance of practice and theory. The scope covers a wide range of applications and apparatus in the power field. In addition to papers focussing on the design and development of electrical equipment, papers relying on analysis are also sought, provided that the arguments are conveyed succinctly and the conclusions are clear. The scope of the journal includes the following: The design and analysis of motors and generators of all sizes Rotating electrical machines Linear machines Actuators Power transformers Railway traction machines and drives Variable speed drives Machines and drives for electrically powered vehicles Industrial and non-industrial applications and processes Current Special Issue. Call for papers: Progress in Electric Machines, Power Converters and their Control for Wave Energy Generation - https://digital-library.theiet.org/files/IET_EPA_CFP_PEMPCCWEG.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信