基于金量子点修饰共价有机骨架的自级联自激活纳米酶快速灵敏地检测活菌

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Yan Tang, Hongmei Ma, Hao Shen
{"title":"基于金量子点修饰共价有机骨架的自级联自激活纳米酶快速灵敏地检测活菌","authors":"Yan Tang,&nbsp;Hongmei Ma,&nbsp;Hao Shen","doi":"10.1007/s00604-025-07182-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multi-enzymes-guided cascade biocatalysis plays an important role in both nature and industry. Nevertheless, the inherent defects of natural enzymes (e.g., unattractive robustness, sensitivity, and reproducibility under severe catalytic environments) have limited their wider employment. Here, a self-cascade nanozyme was synthesized via depositing Au quantum dots (Au QDs) on iron ions and cysteine-doped porphyrin covalent organic framework (Fe@cpCOF). The in situ introduction of cysteine created a beneficial microenvironment around the iron-porphyrin catalytic center, facilitating the activity of the nanozyme. Through the regulation of Au QDs deposition amount on the surface of Fe@cpCOF, the synthetic nanozyme not only possessed robust glucose oxidase (GOx) mimicking activity but also demonstrated promoted peroxidase (POD) mimicking activity. In the self-cascade system, the innocuous glucose could be constantly transformed to sufficient gluconic acid and H<sub>2</sub>O<sub>2</sub> by Au QDs, preventing the direct application of noxious H<sub>2</sub>O<sub>2</sub> and reducing the detrimental by-effects. In addition, the product gluconic acid decreases the pH of the microenvironment, significantly activating the POD-like bioactivity of Fe@cpCOF. The obtained Au-Fe@cpCOF nanozyme was utilized to simulate the multi-step biocatalytic process in nature, thus constructing an enzyme-free self-cascade biocatalytic sensing platform for specific and wide-spectrum analysis of live bacteria. This study provides a facile assay for pathogen detection in both clinical and daily life.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-cascade and self-activated nanozyme based on Au quantum dot modified covalent organic framework for rapid and sensitive detection of live bacteria\",\"authors\":\"Yan Tang,&nbsp;Hongmei Ma,&nbsp;Hao Shen\",\"doi\":\"10.1007/s00604-025-07182-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multi-enzymes-guided cascade biocatalysis plays an important role in both nature and industry. Nevertheless, the inherent defects of natural enzymes (e.g., unattractive robustness, sensitivity, and reproducibility under severe catalytic environments) have limited their wider employment. Here, a self-cascade nanozyme was synthesized via depositing Au quantum dots (Au QDs) on iron ions and cysteine-doped porphyrin covalent organic framework (Fe@cpCOF). The in situ introduction of cysteine created a beneficial microenvironment around the iron-porphyrin catalytic center, facilitating the activity of the nanozyme. Through the regulation of Au QDs deposition amount on the surface of Fe@cpCOF, the synthetic nanozyme not only possessed robust glucose oxidase (GOx) mimicking activity but also demonstrated promoted peroxidase (POD) mimicking activity. In the self-cascade system, the innocuous glucose could be constantly transformed to sufficient gluconic acid and H<sub>2</sub>O<sub>2</sub> by Au QDs, preventing the direct application of noxious H<sub>2</sub>O<sub>2</sub> and reducing the detrimental by-effects. In addition, the product gluconic acid decreases the pH of the microenvironment, significantly activating the POD-like bioactivity of Fe@cpCOF. The obtained Au-Fe@cpCOF nanozyme was utilized to simulate the multi-step biocatalytic process in nature, thus constructing an enzyme-free self-cascade biocatalytic sensing platform for specific and wide-spectrum analysis of live bacteria. This study provides a facile assay for pathogen detection in both clinical and daily life.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":705,\"journal\":{\"name\":\"Microchimica Acta\",\"volume\":\"192 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microchimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00604-025-07182-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07182-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

多酶引导的级联生物催化在自然界和工业中都发挥着重要作用。然而,天然酶的固有缺陷(例如,在恶劣的催化环境下,缺乏鲁棒性、敏感性和可重复性)限制了它们的广泛应用。本文通过在铁离子和半胱氨酸掺杂的卟啉共价有机骨架(Fe@cpCOF)上沉积金量子点(Au QDs),合成了一种自级联纳米酶。半胱氨酸的原位引入在铁卟啉催化中心周围创造了一个有益的微环境,促进了纳米酶的活性。通过调控Au量子点在Fe@cpCOF表面的沉积量,合成的纳米酶不仅具有较强的葡萄糖氧化酶(GOx)模拟活性,而且具有促进过氧化物酶(POD)模拟活性。在自级联系统中,无害的葡萄糖可以通过Au量子点不断转化为足够的葡萄糖酸和H2O2,防止了有害的H2O2的直接应用,减少了有害的副效应。此外,产物葡萄糖酸降低了微环境的pH值,显著激活了Fe@cpCOF的pod样生物活性。利用所得Au-Fe@cpCOF纳米酶模拟自然界多步生物催化过程,构建无酶自级联生物催化传感平台,对活菌进行特异广谱分析。本研究为临床和日常生活中的病原体检测提供了一种简便的检测方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-cascade and self-activated nanozyme based on Au quantum dot modified covalent organic framework for rapid and sensitive detection of live bacteria

Multi-enzymes-guided cascade biocatalysis plays an important role in both nature and industry. Nevertheless, the inherent defects of natural enzymes (e.g., unattractive robustness, sensitivity, and reproducibility under severe catalytic environments) have limited their wider employment. Here, a self-cascade nanozyme was synthesized via depositing Au quantum dots (Au QDs) on iron ions and cysteine-doped porphyrin covalent organic framework (Fe@cpCOF). The in situ introduction of cysteine created a beneficial microenvironment around the iron-porphyrin catalytic center, facilitating the activity of the nanozyme. Through the regulation of Au QDs deposition amount on the surface of Fe@cpCOF, the synthetic nanozyme not only possessed robust glucose oxidase (GOx) mimicking activity but also demonstrated promoted peroxidase (POD) mimicking activity. In the self-cascade system, the innocuous glucose could be constantly transformed to sufficient gluconic acid and H2O2 by Au QDs, preventing the direct application of noxious H2O2 and reducing the detrimental by-effects. In addition, the product gluconic acid decreases the pH of the microenvironment, significantly activating the POD-like bioactivity of Fe@cpCOF. The obtained Au-Fe@cpCOF nanozyme was utilized to simulate the multi-step biocatalytic process in nature, thus constructing an enzyme-free self-cascade biocatalytic sensing platform for specific and wide-spectrum analysis of live bacteria. This study provides a facile assay for pathogen detection in both clinical and daily life.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信