{"title":"从煤烟中发出白光的自组装石墨烯量子点","authors":"Shiv Rag Mishra, Tuhin Mandal, Rabi Narayan Senapati, Vikram Singh","doi":"10.1007/s42823-025-00860-3","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene quantum dots have recently gained significant attention for their potential application in the development of optoelectronic materials. The present study focused on the ultrasonic method to synthesize white-light-emitting graphene quantum dots from coal soot in just 2 min at room temperature. The white-light emission was achieved in solution and polymeric film with good Commission Internationale del’Eclairage index (0.28, 0.33) and (0.25, 0.30), respectively. The graphene quantum dots cover a significant fraction of the visible region in the emission spectrum with two prominent bands at 475 and 635 nm at 380 nm photoexcitation, corresponding to monomer and J-aggregate emission. The strong reducing and basic nature of the ethylene diamine facilitated the preparation of self-assembled J-aggregate graphene quantum dots through hydrogen bonding and electrostatic interaction. The mechanism of origin J-aggregate emission in the prepared graphene quantum dots was studied using UV–visible absorption, steady-state, lifetime fluorescence spectroscopy, and zeta potential. The as-synthesized graphene quantum dots are successfully coated on the UV-LEDs' surface and emit white light on the applied voltage. The colours of red, green, blue, and yellow balls appear significantly in the lighting of prepared white LEDs.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"35 3","pages":"1067 - 1079"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"White-light emitting self-assembled graphene quantum dots from coal soot\",\"authors\":\"Shiv Rag Mishra, Tuhin Mandal, Rabi Narayan Senapati, Vikram Singh\",\"doi\":\"10.1007/s42823-025-00860-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graphene quantum dots have recently gained significant attention for their potential application in the development of optoelectronic materials. The present study focused on the ultrasonic method to synthesize white-light-emitting graphene quantum dots from coal soot in just 2 min at room temperature. The white-light emission was achieved in solution and polymeric film with good Commission Internationale del’Eclairage index (0.28, 0.33) and (0.25, 0.30), respectively. The graphene quantum dots cover a significant fraction of the visible region in the emission spectrum with two prominent bands at 475 and 635 nm at 380 nm photoexcitation, corresponding to monomer and J-aggregate emission. The strong reducing and basic nature of the ethylene diamine facilitated the preparation of self-assembled J-aggregate graphene quantum dots through hydrogen bonding and electrostatic interaction. The mechanism of origin J-aggregate emission in the prepared graphene quantum dots was studied using UV–visible absorption, steady-state, lifetime fluorescence spectroscopy, and zeta potential. The as-synthesized graphene quantum dots are successfully coated on the UV-LEDs' surface and emit white light on the applied voltage. The colours of red, green, blue, and yellow balls appear significantly in the lighting of prepared white LEDs.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":506,\"journal\":{\"name\":\"Carbon Letters\",\"volume\":\"35 3\",\"pages\":\"1067 - 1079\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42823-025-00860-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42823-025-00860-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
White-light emitting self-assembled graphene quantum dots from coal soot
Graphene quantum dots have recently gained significant attention for their potential application in the development of optoelectronic materials. The present study focused on the ultrasonic method to synthesize white-light-emitting graphene quantum dots from coal soot in just 2 min at room temperature. The white-light emission was achieved in solution and polymeric film with good Commission Internationale del’Eclairage index (0.28, 0.33) and (0.25, 0.30), respectively. The graphene quantum dots cover a significant fraction of the visible region in the emission spectrum with two prominent bands at 475 and 635 nm at 380 nm photoexcitation, corresponding to monomer and J-aggregate emission. The strong reducing and basic nature of the ethylene diamine facilitated the preparation of self-assembled J-aggregate graphene quantum dots through hydrogen bonding and electrostatic interaction. The mechanism of origin J-aggregate emission in the prepared graphene quantum dots was studied using UV–visible absorption, steady-state, lifetime fluorescence spectroscopy, and zeta potential. The as-synthesized graphene quantum dots are successfully coated on the UV-LEDs' surface and emit white light on the applied voltage. The colours of red, green, blue, and yellow balls appear significantly in the lighting of prepared white LEDs.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.