筛选通道液体采集装置的控制预张力筛选依从性测试

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Hao Wang, Jason Hartwig, Bohan Huang, J. N. Chung, Runyang Cui, Chase Camarotti, Arthur Werkheiser
{"title":"筛选通道液体采集装置的控制预张力筛选依从性测试","authors":"Hao Wang,&nbsp;Jason Hartwig,&nbsp;Bohan Huang,&nbsp;J. N. Chung,&nbsp;Runyang Cui,&nbsp;Chase Camarotti,&nbsp;Arthur Werkheiser","doi":"10.1007/s12217-025-10179-3","DOIUrl":null,"url":null,"abstract":"<div><p>Screen channel liquid acquisition devices (LADs) are used to separate gas and liquid phases within a propellant tank in microgravity so that single-phase liquid can be extracted to the transfer line. Screen channel LADs rely on porous mesh screens and surface tension forces to allow liquid to flow while blocking vapor penetration. During the transient startup of propellant transfer, the liquid must be accelerated from rest to the steady flow demand velocity, which causes the screen to deform or comply. Compliance depends on multiple parameters, most notably the mesh type and open area. Recent testing has shown that the screen pretension level is also a variable that must be controlled and quantified. This paper presents new screen compliance design, testing, and experimental results to determine the effect of pretension. Testing is conducted on six screen meshes, two metal types, three open area aspect ratios, two orientations, and three tension levels. Results show that the screen compliance rate increases with increasing pretension in both linear and nonlinear regimes and that mesh type, metal type, open area, and orientation all affect compliance.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"37 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screen Compliance Testing with Controlled Pre-Tension for Screen Channel Liquid Acquisition Devices\",\"authors\":\"Hao Wang,&nbsp;Jason Hartwig,&nbsp;Bohan Huang,&nbsp;J. N. Chung,&nbsp;Runyang Cui,&nbsp;Chase Camarotti,&nbsp;Arthur Werkheiser\",\"doi\":\"10.1007/s12217-025-10179-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Screen channel liquid acquisition devices (LADs) are used to separate gas and liquid phases within a propellant tank in microgravity so that single-phase liquid can be extracted to the transfer line. Screen channel LADs rely on porous mesh screens and surface tension forces to allow liquid to flow while blocking vapor penetration. During the transient startup of propellant transfer, the liquid must be accelerated from rest to the steady flow demand velocity, which causes the screen to deform or comply. Compliance depends on multiple parameters, most notably the mesh type and open area. Recent testing has shown that the screen pretension level is also a variable that must be controlled and quantified. This paper presents new screen compliance design, testing, and experimental results to determine the effect of pretension. Testing is conducted on six screen meshes, two metal types, three open area aspect ratios, two orientations, and three tension levels. Results show that the screen compliance rate increases with increasing pretension in both linear and nonlinear regimes and that mesh type, metal type, open area, and orientation all affect compliance.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"37 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-025-10179-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-025-10179-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

筛管通道液体采集装置(LADs)用于在微重力条件下分离推进剂储罐内的气、液相,从而将单相液体提取到传输线。过滤通道LADs依靠多孔网屏和表面张力来允许液体流动,同时阻止蒸汽渗透。在推进剂传递的瞬态启动过程中,液体必须从静止加速到稳定的流动需求速度,从而导致筛网变形或依从。顺应性取决于多个参数,最明显的是网格类型和开放面积。最近的测试表明,丝网预张力水平也是一个必须控制和量化的变量。本文介绍了一种新的筛网顺应性设计、测试和实验结果,以确定预紧力的影响。测试对六种筛网、两种金属类型、三种开放区域纵横比、两种方向和三种张力水平进行了测试。结果表明,在线性和非线性两种情况下,随着预紧力的增加,筛网柔顺率都有所增加,而且筛网类型、金属类型、开口面积和方向都对柔顺性有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Screen Compliance Testing with Controlled Pre-Tension for Screen Channel Liquid Acquisition Devices

Screen channel liquid acquisition devices (LADs) are used to separate gas and liquid phases within a propellant tank in microgravity so that single-phase liquid can be extracted to the transfer line. Screen channel LADs rely on porous mesh screens and surface tension forces to allow liquid to flow while blocking vapor penetration. During the transient startup of propellant transfer, the liquid must be accelerated from rest to the steady flow demand velocity, which causes the screen to deform or comply. Compliance depends on multiple parameters, most notably the mesh type and open area. Recent testing has shown that the screen pretension level is also a variable that must be controlled and quantified. This paper presents new screen compliance design, testing, and experimental results to determine the effect of pretension. Testing is conducted on six screen meshes, two metal types, three open area aspect ratios, two orientations, and three tension levels. Results show that the screen compliance rate increases with increasing pretension in both linear and nonlinear regimes and that mesh type, metal type, open area, and orientation all affect compliance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microgravity Science and Technology
Microgravity Science and Technology 工程技术-工程:宇航
CiteScore
3.50
自引率
44.40%
发文量
96
期刊介绍: Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity. Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges). Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are: − materials science − fluid mechanics − process engineering − physics − chemistry − heat and mass transfer − gravitational biology − radiation biology − exobiology and astrobiology − human physiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信