1-2猜想适用于正则图

IF 1.2 1区 数学 Q1 MATHEMATICS
Kecai Deng , Hongyuan Qiu
{"title":"1-2猜想适用于正则图","authors":"Kecai Deng ,&nbsp;Hongyuan Qiu","doi":"10.1016/j.jctb.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>The 1-2 conjecture asserts that the vertices and edges of every graph can be assigned with weights in <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> such that adjacent vertices receive distinct weighted degrees. While this conjecture remains open in general, it has been proven that it is possible to achieve this using the weight set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. We demonstrate that the weight set <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> suffices for every graph. As a corollary, the 1-2 conjecture is confirmed for regular graphs. Additionally, we verify another related conjecture concerning locally irregular total colouring, for regular graphs.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"174 ","pages":"Pages 207-213"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 1-2 conjecture holds for regular graphs\",\"authors\":\"Kecai Deng ,&nbsp;Hongyuan Qiu\",\"doi\":\"10.1016/j.jctb.2025.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 1-2 conjecture asserts that the vertices and edges of every graph can be assigned with weights in <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></math></span> such that adjacent vertices receive distinct weighted degrees. While this conjecture remains open in general, it has been proven that it is possible to achieve this using the weight set <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></math></span>. We demonstrate that the weight set <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>}</mo></math></span> suffices for every graph. As a corollary, the 1-2 conjecture is confirmed for regular graphs. Additionally, we verify another related conjecture concerning locally irregular total colouring, for regular graphs.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"174 \",\"pages\":\"Pages 207-213\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895625000371\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895625000371","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1-2猜想断言每个图的顶点和边都可以在{1,2}中赋予权重,使得相邻的顶点得到不同的加权度。虽然这个猜想在一般情况下仍然是开放的,但已经证明可以使用权值集{1,2,3}来实现这一点。我们证明了权值集{0,1}对每个图都是足够的。作为一个推论,对正则图证实了1-2猜想。此外,对于正则图,我们验证了另一个关于局部不规则全着色的相关猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 1-2 conjecture holds for regular graphs
The 1-2 conjecture asserts that the vertices and edges of every graph can be assigned with weights in {1,2} such that adjacent vertices receive distinct weighted degrees. While this conjecture remains open in general, it has been proven that it is possible to achieve this using the weight set {1,2,3}. We demonstrate that the weight set {0,1} suffices for every graph. As a corollary, the 1-2 conjecture is confirmed for regular graphs. Additionally, we verify another related conjecture concerning locally irregular total colouring, for regular graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信