Gan Jin , Yunqi Liu , Zhihao Zhang , Yeonwoo Yim , Dae Gyun Lee , Min Suk Shim , Reuben Kim , Jong-Eun Kim
{"title":"热老化对含抗菌甲基丙烯酸季铵聚氨酯基3D打印树脂的影响","authors":"Gan Jin , Yunqi Liu , Zhihao Zhang , Yeonwoo Yim , Dae Gyun Lee , Min Suk Shim , Reuben Kim , Jong-Eun Kim","doi":"10.1016/j.jmbbm.2025.107063","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This study aimed to determine the impacts of thermal aging on the mechanical properties, biocompatibility, and antibacterial effectiveness of a urethane acrylate-based (UA) 3D printing resin containing dimethylaminohexadecyl methacrylate (DMAHDM).</div></div><div><h3>Methods</h3><div>DMAHDM was synthesized and incorporated into UA resin at 0.25 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. Specimens were 3D printed, washed, post-cured, and thermal cycled at 5 °C and 55 °C for 833, 2500, and 5000 cycles. The group without DMAHDM or aging was considered as the control group. Degree of conversion (DC), color differences, antibacterial effectiveness, cell viability, and mechanical properties were evaluated. Two-way analysis of variance was performed with a significance cutoff of α = 0.05.</div></div><div><h3>Results</h3><div>DC increased with the DMAHDM concentration, with the highest DC being observed at 1 wt% (53.68 ± 0.35 %) (mean ± standard deviation). The color of the specimens showed significant changes after 2500 and 5000 cycles. Antibacterial effectiveness was improved with 0.75 wt% and 1 wt% DMAHDM. Cytotoxicity was observed with prolonged thermal aging cycles. Flexural strength decreased with increasing DMAHDM concentrations and aging, with the lowest values at 1 wt% (93.02 ± 17.96 MPa) after 5000 cycles. However, Vickers hardness significantly increased with both DMAHDM and aging, reaching a peak at 5000 cycles (24.49 ± 0.96 HV).</div></div><div><h3>Conclusions</h3><div>DMAHDM concentration and thermal aging significantly influenced UA-based 3D printing resins properties. Higher DMAHDM concentration enhanced antibacterial effectiveness and Vickers hardness yet reduced flexural strength after 0.75 wt%. Thermal aging decreased flexural strength while improving DC and hardness. Prolonged aging also led to color changes and increased cytotoxicity.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"169 ","pages":"Article 107063"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of thermal aging on a urethane acrylate-based 3D printing resin incorporated with antibacterial quaternary ammonium methacrylate\",\"authors\":\"Gan Jin , Yunqi Liu , Zhihao Zhang , Yeonwoo Yim , Dae Gyun Lee , Min Suk Shim , Reuben Kim , Jong-Eun Kim\",\"doi\":\"10.1016/j.jmbbm.2025.107063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>This study aimed to determine the impacts of thermal aging on the mechanical properties, biocompatibility, and antibacterial effectiveness of a urethane acrylate-based (UA) 3D printing resin containing dimethylaminohexadecyl methacrylate (DMAHDM).</div></div><div><h3>Methods</h3><div>DMAHDM was synthesized and incorporated into UA resin at 0.25 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. Specimens were 3D printed, washed, post-cured, and thermal cycled at 5 °C and 55 °C for 833, 2500, and 5000 cycles. The group without DMAHDM or aging was considered as the control group. Degree of conversion (DC), color differences, antibacterial effectiveness, cell viability, and mechanical properties were evaluated. Two-way analysis of variance was performed with a significance cutoff of α = 0.05.</div></div><div><h3>Results</h3><div>DC increased with the DMAHDM concentration, with the highest DC being observed at 1 wt% (53.68 ± 0.35 %) (mean ± standard deviation). The color of the specimens showed significant changes after 2500 and 5000 cycles. Antibacterial effectiveness was improved with 0.75 wt% and 1 wt% DMAHDM. Cytotoxicity was observed with prolonged thermal aging cycles. Flexural strength decreased with increasing DMAHDM concentrations and aging, with the lowest values at 1 wt% (93.02 ± 17.96 MPa) after 5000 cycles. However, Vickers hardness significantly increased with both DMAHDM and aging, reaching a peak at 5000 cycles (24.49 ± 0.96 HV).</div></div><div><h3>Conclusions</h3><div>DMAHDM concentration and thermal aging significantly influenced UA-based 3D printing resins properties. Higher DMAHDM concentration enhanced antibacterial effectiveness and Vickers hardness yet reduced flexural strength after 0.75 wt%. Thermal aging decreased flexural strength while improving DC and hardness. Prolonged aging also led to color changes and increased cytotoxicity.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"169 \",\"pages\":\"Article 107063\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125001791\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125001791","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Effect of thermal aging on a urethane acrylate-based 3D printing resin incorporated with antibacterial quaternary ammonium methacrylate
Purpose
This study aimed to determine the impacts of thermal aging on the mechanical properties, biocompatibility, and antibacterial effectiveness of a urethane acrylate-based (UA) 3D printing resin containing dimethylaminohexadecyl methacrylate (DMAHDM).
Methods
DMAHDM was synthesized and incorporated into UA resin at 0.25 wt%, 0.5 wt%, 0.75 wt%, and 1 wt%. Specimens were 3D printed, washed, post-cured, and thermal cycled at 5 °C and 55 °C for 833, 2500, and 5000 cycles. The group without DMAHDM or aging was considered as the control group. Degree of conversion (DC), color differences, antibacterial effectiveness, cell viability, and mechanical properties were evaluated. Two-way analysis of variance was performed with a significance cutoff of α = 0.05.
Results
DC increased with the DMAHDM concentration, with the highest DC being observed at 1 wt% (53.68 ± 0.35 %) (mean ± standard deviation). The color of the specimens showed significant changes after 2500 and 5000 cycles. Antibacterial effectiveness was improved with 0.75 wt% and 1 wt% DMAHDM. Cytotoxicity was observed with prolonged thermal aging cycles. Flexural strength decreased with increasing DMAHDM concentrations and aging, with the lowest values at 1 wt% (93.02 ± 17.96 MPa) after 5000 cycles. However, Vickers hardness significantly increased with both DMAHDM and aging, reaching a peak at 5000 cycles (24.49 ± 0.96 HV).
Conclusions
DMAHDM concentration and thermal aging significantly influenced UA-based 3D printing resins properties. Higher DMAHDM concentration enhanced antibacterial effectiveness and Vickers hardness yet reduced flexural strength after 0.75 wt%. Thermal aging decreased flexural strength while improving DC and hardness. Prolonged aging also led to color changes and increased cytotoxicity.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.