Juan Moyano , Luigi Barazzetti , Mattia Previtali , Juan E. Nieto-Julián
{"title":"使用点云数据在HBIM生成中优化复杂交叉拱顶几何的最佳拟合算法","authors":"Juan Moyano , Luigi Barazzetti , Mattia Previtali , Juan E. Nieto-Julián","doi":"10.1016/j.autcon.2025.106274","DOIUrl":null,"url":null,"abstract":"<div><div>Builders of the past naturally adjusted geometries to fit existing surfaces. Today, replicating these forms during the 3D digitization of historical elements poses a significant challenge for BIM operators. Achieving a precise fit for the geometry of a cross-vault facilitates the implementation of the Scan-to-BIM approach for repetitive objects with significant variations in their geometry. This paper introduces a descriptive mathematical model that provides BIM experts with a foundation for creating multiple geometric replicas. The approach employs clustering algorithms, optimization techniques, frequency analysis via Fourier transform, and ordinary Kriging interpolation. Two parametric BIM models are developed: one simple model defined by five variables and another more complex model defined by nine geometric variables. Both models are validated against the segmented point cloud. The results indicate interpolated standard deviations of ±0.0085 m for the simple vault and ± 0.0066 m for the complex vault. The difference between using the simple and complex vault models is ±0.0082 m, representing a variation of 0.01 % in the values of the five optimized parameters.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"176 ","pages":"Article 106274"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing best-fit algorithms for complex cross-vault geometries in HBIM generation using point cloud data\",\"authors\":\"Juan Moyano , Luigi Barazzetti , Mattia Previtali , Juan E. Nieto-Julián\",\"doi\":\"10.1016/j.autcon.2025.106274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Builders of the past naturally adjusted geometries to fit existing surfaces. Today, replicating these forms during the 3D digitization of historical elements poses a significant challenge for BIM operators. Achieving a precise fit for the geometry of a cross-vault facilitates the implementation of the Scan-to-BIM approach for repetitive objects with significant variations in their geometry. This paper introduces a descriptive mathematical model that provides BIM experts with a foundation for creating multiple geometric replicas. The approach employs clustering algorithms, optimization techniques, frequency analysis via Fourier transform, and ordinary Kriging interpolation. Two parametric BIM models are developed: one simple model defined by five variables and another more complex model defined by nine geometric variables. Both models are validated against the segmented point cloud. The results indicate interpolated standard deviations of ±0.0085 m for the simple vault and ± 0.0066 m for the complex vault. The difference between using the simple and complex vault models is ±0.0082 m, representing a variation of 0.01 % in the values of the five optimized parameters.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"176 \",\"pages\":\"Article 106274\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525003140\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525003140","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Optimizing best-fit algorithms for complex cross-vault geometries in HBIM generation using point cloud data
Builders of the past naturally adjusted geometries to fit existing surfaces. Today, replicating these forms during the 3D digitization of historical elements poses a significant challenge for BIM operators. Achieving a precise fit for the geometry of a cross-vault facilitates the implementation of the Scan-to-BIM approach for repetitive objects with significant variations in their geometry. This paper introduces a descriptive mathematical model that provides BIM experts with a foundation for creating multiple geometric replicas. The approach employs clustering algorithms, optimization techniques, frequency analysis via Fourier transform, and ordinary Kriging interpolation. Two parametric BIM models are developed: one simple model defined by five variables and another more complex model defined by nine geometric variables. Both models are validated against the segmented point cloud. The results indicate interpolated standard deviations of ±0.0085 m for the simple vault and ± 0.0066 m for the complex vault. The difference between using the simple and complex vault models is ±0.0082 m, representing a variation of 0.01 % in the values of the five optimized parameters.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.