动态两体接触与裂纹问题混合有限元近似的半光滑牛顿法收敛性分析

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Victor A. Kovtunenko , Yves Renard
{"title":"动态两体接触与裂纹问题混合有限元近似的半光滑牛顿法收敛性分析","authors":"Victor A. Kovtunenko ,&nbsp;Yves Renard","doi":"10.1016/j.cam.2025.116722","DOIUrl":null,"url":null,"abstract":"<div><div>A class of elastodynamic problems describing contact between two deformable bodies as well as non-penetrating cracks in a single body is considered in the framework of FEM approximation. For time discretization, the Hilber–Hughes–Taylor (HHT-<span><math><mi>α</mi></math></span>) method extending Newmark schemes is incorporated. Using mixed variational formulation of the fully discrete contact problem, a semi-smooth Newton method of solution is provided with the locally super-linear convergence. An equivalent primal–dual active set algorithm validates monotone properties of global convergence for the Newton iterates provided by M-matrix property. Numerical solution of the Signorini contact with rigid obstacle is presented for isotropic body in 2D using benchmark and moving load experiment.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"471 ","pages":"Article 116722"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of semi-smooth Newton method for mixed FEM approximations of dynamic two-body contact and crack problems\",\"authors\":\"Victor A. Kovtunenko ,&nbsp;Yves Renard\",\"doi\":\"10.1016/j.cam.2025.116722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A class of elastodynamic problems describing contact between two deformable bodies as well as non-penetrating cracks in a single body is considered in the framework of FEM approximation. For time discretization, the Hilber–Hughes–Taylor (HHT-<span><math><mi>α</mi></math></span>) method extending Newmark schemes is incorporated. Using mixed variational formulation of the fully discrete contact problem, a semi-smooth Newton method of solution is provided with the locally super-linear convergence. An equivalent primal–dual active set algorithm validates monotone properties of global convergence for the Newton iterates provided by M-matrix property. Numerical solution of the Signorini contact with rigid obstacle is presented for isotropic body in 2D using benchmark and moving load experiment.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"471 \",\"pages\":\"Article 116722\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725002365\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725002365","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在有限元近似的框架下,考虑了一类描述两个可变形物体之间的接触和单个物体的非穿透性裂纹的弹性动力学问题。对于时间离散化,采用Hilber-Hughes-Taylor (HHT-α)方法扩展Newmark格式。利用完全离散接触问题的混合变分形式,给出了一种具有局部超线性收敛性的半光滑牛顿方法。一个等效的原对偶活动集算法验证了由m矩阵性质提供的Newton迭代的全局收敛单调性。采用基准实验和移动载荷实验,给出了各向同性物体与刚性障碍物的二维sigorini接触数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of semi-smooth Newton method for mixed FEM approximations of dynamic two-body contact and crack problems
A class of elastodynamic problems describing contact between two deformable bodies as well as non-penetrating cracks in a single body is considered in the framework of FEM approximation. For time discretization, the Hilber–Hughes–Taylor (HHT-α) method extending Newmark schemes is incorporated. Using mixed variational formulation of the fully discrete contact problem, a semi-smooth Newton method of solution is provided with the locally super-linear convergence. An equivalent primal–dual active set algorithm validates monotone properties of global convergence for the Newton iterates provided by M-matrix property. Numerical solution of the Signorini contact with rigid obstacle is presented for isotropic body in 2D using benchmark and moving load experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信