双曲平衡律有限体积逼近的基于良好平衡pod的降阶模型

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
I. Gómez-Bueno , E.D. Fernández-Nieto , S. Rubino
{"title":"双曲平衡律有限体积逼近的基于良好平衡pod的降阶模型","authors":"I. Gómez-Bueno ,&nbsp;E.D. Fernández-Nieto ,&nbsp;S. Rubino","doi":"10.1016/j.cam.2025.116735","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"471 ","pages":"Article 116735"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-balanced POD-based reduced-order models for finite volume approximation of hyperbolic balance laws\",\"authors\":\"I. Gómez-Bueno ,&nbsp;E.D. Fernández-Nieto ,&nbsp;S. Rubino\",\"doi\":\"10.1016/j.cam.2025.116735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"471 \",\"pages\":\"Article 116735\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725002493\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725002493","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于有限体积法的双曲系统降阶建模方法,该方法将适当正交分解(POD)与离散经验插值法(DEIM)和适当区间分解(PID)相结合。将该方法应用于具有源项的输运方程、非齐次Burgers方程以及具有非平坦测深和Manning摩擦的浅水方程等系统,与以往的时间平均技术相比,该方法在计算效率和精度方面取得了显著提高。一个理论结果证明了良好平衡的全阶模型(FOMs)的使用。数值实验验证了该方法的正确性和有效性。此外,还解决了依赖于某些物理参数的系统解的预测问题,并且对POD参数的敏感性分析证实了该模型在这种情况下的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-balanced POD-based reduced-order models for finite volume approximation of hyperbolic balance laws
This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信