{"title":"双曲平衡律有限体积逼近的基于良好平衡pod的降阶模型","authors":"I. Gómez-Bueno , E.D. Fernández-Nieto , S. Rubino","doi":"10.1016/j.cam.2025.116735","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"471 ","pages":"Article 116735"},"PeriodicalIF":2.1000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-balanced POD-based reduced-order models for finite volume approximation of hyperbolic balance laws\",\"authors\":\"I. Gómez-Bueno , E.D. Fernández-Nieto , S. Rubino\",\"doi\":\"10.1016/j.cam.2025.116735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"471 \",\"pages\":\"Article 116735\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725002493\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725002493","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Well-balanced POD-based reduced-order models for finite volume approximation of hyperbolic balance laws
This paper introduces a reduced-order modeling approach based on finite volume methods for hyperbolic systems, combining Proper Orthogonal Decomposition (POD) with the Discrete Empirical Interpolation Method (DEIM) and Proper Interval Decomposition (PID). Applied to systems such as the transport equation with source term, non-homogeneous Burgers equation, and shallow water equations with non-flat bathymetry and Manning friction, this method achieves significant improvements in computational efficiency and accuracy compared to previous time-averaging techniques. A theoretical result justifying the use of well-balanced Full-Order Models (FOMs) is presented. Numerical experiments validate the approach, demonstrating its accuracy and efficiency. Furthermore, the question of prediction of solutions for systems that depend on some physical parameters is also addressed, and a sensitivity analysis on POD parameters confirms the model’s robustness and efficiency in this case.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.