Mohammad Rizwan Ahmad , Anees A. Ansari , Marshal Dhayal , Ruichan Lv
{"title":"ZnO纳米材料的带隙工程以提高电化学和光催化效率","authors":"Mohammad Rizwan Ahmad , Anees A. Ansari , Marshal Dhayal , Ruichan Lv","doi":"10.1016/j.rser.2025.115767","DOIUrl":null,"url":null,"abstract":"<div><div>Zinc oxide (ZnO)-based hybrid nanocomposites are promising materials for electrochemical device development due to their tunable energy bandgap (<em>E</em><sub>g</sub> = 2.8–3.3 eV), high thermochemical stability, and enhanced electronic, mechanical, and piezoelectric properties. However, the wide <em>E</em><sub>g</sub> of ZnO restricts radiation absorption to the UV range, reducing efficiency in optoelectronic and photocatalytic applications. Bandgap tuning through metal and non-metal doping, structural defect incorporation, and heterojunction construction with lower bandgap materials improves visible light absorption and charge transfer efficiency. These modifications delay photoinduced electron-hole recombination, enhancing electrochemical properties and reducing charge transfer resistance. Bandgap tuning or bending mechanisms play a key role in ZnO heterojunction, while quantum confinement effects further influence bandgap shifts at the nanoscale. This review comprehensively covers various ZnO synthesis methods, including sol-gel, hydrothermal, vapor transport, and green synthesis techniques, and their impact on bandgap tuning and material properties. An overview is presented on the implications of ZnO bandgap engineering in electrochemical applications, including photocatalysis, gas sensing, dye-sensitized solar cells, and electrochemical energy-storing devices. The development of flexible, robust, and efficient ZnO-based electrochemical systems is important for summit the difficulties of next-generation smart and portable electronic devices.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"219 ","pages":"Article 115767"},"PeriodicalIF":16.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bandgap engineering of ZnO nanomaterials for enhanced electrochemical and photocatalytic efficiency\",\"authors\":\"Mohammad Rizwan Ahmad , Anees A. Ansari , Marshal Dhayal , Ruichan Lv\",\"doi\":\"10.1016/j.rser.2025.115767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zinc oxide (ZnO)-based hybrid nanocomposites are promising materials for electrochemical device development due to their tunable energy bandgap (<em>E</em><sub>g</sub> = 2.8–3.3 eV), high thermochemical stability, and enhanced electronic, mechanical, and piezoelectric properties. However, the wide <em>E</em><sub>g</sub> of ZnO restricts radiation absorption to the UV range, reducing efficiency in optoelectronic and photocatalytic applications. Bandgap tuning through metal and non-metal doping, structural defect incorporation, and heterojunction construction with lower bandgap materials improves visible light absorption and charge transfer efficiency. These modifications delay photoinduced electron-hole recombination, enhancing electrochemical properties and reducing charge transfer resistance. Bandgap tuning or bending mechanisms play a key role in ZnO heterojunction, while quantum confinement effects further influence bandgap shifts at the nanoscale. This review comprehensively covers various ZnO synthesis methods, including sol-gel, hydrothermal, vapor transport, and green synthesis techniques, and their impact on bandgap tuning and material properties. An overview is presented on the implications of ZnO bandgap engineering in electrochemical applications, including photocatalysis, gas sensing, dye-sensitized solar cells, and electrochemical energy-storing devices. The development of flexible, robust, and efficient ZnO-based electrochemical systems is important for summit the difficulties of next-generation smart and portable electronic devices.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"219 \",\"pages\":\"Article 115767\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136403212500440X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136403212500440X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Bandgap engineering of ZnO nanomaterials for enhanced electrochemical and photocatalytic efficiency
Zinc oxide (ZnO)-based hybrid nanocomposites are promising materials for electrochemical device development due to their tunable energy bandgap (Eg = 2.8–3.3 eV), high thermochemical stability, and enhanced electronic, mechanical, and piezoelectric properties. However, the wide Eg of ZnO restricts radiation absorption to the UV range, reducing efficiency in optoelectronic and photocatalytic applications. Bandgap tuning through metal and non-metal doping, structural defect incorporation, and heterojunction construction with lower bandgap materials improves visible light absorption and charge transfer efficiency. These modifications delay photoinduced electron-hole recombination, enhancing electrochemical properties and reducing charge transfer resistance. Bandgap tuning or bending mechanisms play a key role in ZnO heterojunction, while quantum confinement effects further influence bandgap shifts at the nanoscale. This review comprehensively covers various ZnO synthesis methods, including sol-gel, hydrothermal, vapor transport, and green synthesis techniques, and their impact on bandgap tuning and material properties. An overview is presented on the implications of ZnO bandgap engineering in electrochemical applications, including photocatalysis, gas sensing, dye-sensitized solar cells, and electrochemical energy-storing devices. The development of flexible, robust, and efficient ZnO-based electrochemical systems is important for summit the difficulties of next-generation smart and portable electronic devices.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.