非线性Benjamin-Bona-Mahony-Burgers方程耗能特性虚元法的最优收敛性分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yanping Chen , Wanxiang Liu , Fangfang Qin , Qin Liang
{"title":"非线性Benjamin-Bona-Mahony-Burgers方程耗能特性虚元法的最优收敛性分析","authors":"Yanping Chen ,&nbsp;Wanxiang Liu ,&nbsp;Fangfang Qin ,&nbsp;Qin Liang","doi":"10.1016/j.camwa.2025.05.003","DOIUrl":null,"url":null,"abstract":"<div><div>A novel arbitrary high-order energy-stable fully discrete schemes are proposed for the nonlinear Benjamin-Bona-Mahony-Burgers equation based on linearized Crank-Nicolson scheme in time and the virtual element discretization in space. Two skew-symmetric discrete forms are introduced to preserve energy dissipation of the numerical scheme. Furthermore, by utilizing the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> projection to approximate the nonlinear term and estimating the error of the discrete bilinear forms carefully, the optimal error estimate of the numerical scheme in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is obtained. Finally, several numerical examples on various mesh types are provided to demonstrate the energy stability, optimal convergence and high efficiency of the method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"192 ","pages":"Pages 37-53"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal convergence analysis of an energy dissipation property virtual element method for the nonlinear Benjamin-Bona-Mahony-Burgers equation\",\"authors\":\"Yanping Chen ,&nbsp;Wanxiang Liu ,&nbsp;Fangfang Qin ,&nbsp;Qin Liang\",\"doi\":\"10.1016/j.camwa.2025.05.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel arbitrary high-order energy-stable fully discrete schemes are proposed for the nonlinear Benjamin-Bona-Mahony-Burgers equation based on linearized Crank-Nicolson scheme in time and the virtual element discretization in space. Two skew-symmetric discrete forms are introduced to preserve energy dissipation of the numerical scheme. Furthermore, by utilizing the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> projection to approximate the nonlinear term and estimating the error of the discrete bilinear forms carefully, the optimal error estimate of the numerical scheme in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm is obtained. Finally, several numerical examples on various mesh types are provided to demonstrate the energy stability, optimal convergence and high efficiency of the method.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"192 \",\"pages\":\"Pages 37-53\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125001932\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001932","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于时间上的线性化Crank-Nicolson格式和空间上的虚元离散化,提出了求解非线性Benjamin-Bona-Mahony-Burgers方程的任意高阶能量稳定全离散格式。为了保持数值格式的能量耗散,引入了两种偏对称的离散形式。此外,利用L2投影近似非线性项,仔细估计离散双线性形式的误差,得到了数值格式在h1范数下的最优误差估计。最后,给出了不同网格类型的数值算例,验证了该方法的能量稳定性、最优收敛性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal convergence analysis of an energy dissipation property virtual element method for the nonlinear Benjamin-Bona-Mahony-Burgers equation
A novel arbitrary high-order energy-stable fully discrete schemes are proposed for the nonlinear Benjamin-Bona-Mahony-Burgers equation based on linearized Crank-Nicolson scheme in time and the virtual element discretization in space. Two skew-symmetric discrete forms are introduced to preserve energy dissipation of the numerical scheme. Furthermore, by utilizing the L2 projection to approximate the nonlinear term and estimating the error of the discrete bilinear forms carefully, the optimal error estimate of the numerical scheme in the H1-norm is obtained. Finally, several numerical examples on various mesh types are provided to demonstrate the energy stability, optimal convergence and high efficiency of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信