蛋白质折叠动力学模型的无条件能量稳定不连续Galerkin方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Dan Zhang , YuXing Zhang , Bo Wang
{"title":"蛋白质折叠动力学模型的无条件能量稳定不连续Galerkin方法","authors":"Dan Zhang ,&nbsp;YuXing Zhang ,&nbsp;Bo Wang","doi":"10.1016/j.camwa.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present the coupled nonlinear Schrödinger equations to describe the conformational dynamics of protein secondary structure. We first construct a structure-preserving discrete scheme that ensures both mass conservation and energy stability. The proposed scheme is employed by combining the discontinuous Galerkin (DG) method for spatial discretization, Crank-Nicolson (C-N) approximation for temporal discretization, a second-order convex-concave splitting for the double-well potential and adding additional stabilization term. Moreover, by using the Brouwer fixed point theorem and the Gagliardo-Nirenberg inequality, we rigorously prove the unique solvability and convergence with second-order accuracy in both time and space without the grid ratio condition. Finally, numerical experiments are carried out to demonstrate the convergence rate, mass conservation, energy stability and performance of the developed scheme.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"192 ","pages":"Pages 14-36"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unconditionally energy-stable discontinuous Galerkin method for the dynamics model of protein folding\",\"authors\":\"Dan Zhang ,&nbsp;YuXing Zhang ,&nbsp;Bo Wang\",\"doi\":\"10.1016/j.camwa.2025.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present the coupled nonlinear Schrödinger equations to describe the conformational dynamics of protein secondary structure. We first construct a structure-preserving discrete scheme that ensures both mass conservation and energy stability. The proposed scheme is employed by combining the discontinuous Galerkin (DG) method for spatial discretization, Crank-Nicolson (C-N) approximation for temporal discretization, a second-order convex-concave splitting for the double-well potential and adding additional stabilization term. Moreover, by using the Brouwer fixed point theorem and the Gagliardo-Nirenberg inequality, we rigorously prove the unique solvability and convergence with second-order accuracy in both time and space without the grid ratio condition. Finally, numerical experiments are carried out to demonstrate the convergence rate, mass conservation, energy stability and performance of the developed scheme.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"192 \",\"pages\":\"Pages 14-36\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125001920\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125001920","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了描述蛋白质二级结构构象动力学的耦合非线性Schrödinger方程。我们首先构造了一个保证质量守恒和能量稳定的结构保持离散格式。该方法结合了空间离散化的不连续伽辽金(DG)方法、时间离散化的Crank-Nicolson (C-N)近似、双井势的二阶凹凸分裂和附加稳定项。此外,利用browwer不动点定理和Gagliardo-Nirenberg不等式,在没有网格比条件的情况下,在时间和空间上严格证明了该方法的唯一可解性和二阶精度的收敛性。最后,通过数值实验验证了该方案的收敛速度、质量守恒性、能量稳定性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unconditionally energy-stable discontinuous Galerkin method for the dynamics model of protein folding
In this paper, we present the coupled nonlinear Schrödinger equations to describe the conformational dynamics of protein secondary structure. We first construct a structure-preserving discrete scheme that ensures both mass conservation and energy stability. The proposed scheme is employed by combining the discontinuous Galerkin (DG) method for spatial discretization, Crank-Nicolson (C-N) approximation for temporal discretization, a second-order convex-concave splitting for the double-well potential and adding additional stabilization term. Moreover, by using the Brouwer fixed point theorem and the Gagliardo-Nirenberg inequality, we rigorously prove the unique solvability and convergence with second-order accuracy in both time and space without the grid ratio condition. Finally, numerical experiments are carried out to demonstrate the convergence rate, mass conservation, energy stability and performance of the developed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信