通过径向碳网络增强聚酰胺基碳纤维复合材料的热力学性能:来自微观结构工程和界面相容性的见解

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
Jiamei Liu , Xiaohui Yang , Shuaishuai Zhou , Peng Zhang , Tongle Xu , Peng Ding
{"title":"通过径向碳网络增强聚酰胺基碳纤维复合材料的热力学性能:来自微观结构工程和界面相容性的见解","authors":"Jiamei Liu ,&nbsp;Xiaohui Yang ,&nbsp;Shuaishuai Zhou ,&nbsp;Peng Zhang ,&nbsp;Tongle Xu ,&nbsp;Peng Ding","doi":"10.1016/j.coco.2025.102463","DOIUrl":null,"url":null,"abstract":"<div><div>The synergistic optimization of thermal management and mechanical properties is a central challenge for the application of carbon fiber composites in high power electronics and lightweight structures. In this study, a multiscale synergistic strategy of “radiation freezing-interfacial welding-in situ interlocking” was proposed to successfully prepare three-dimensional (3D) polyamide composites reinforced by radial carbon networks. Through directional freezing to induce the formation of radially oriented interpenetrating networks between carbon fibers and graphene oxide, combined with stepwise thermal reduction to construct carbon-carbon covalent interfaces, and in-situ polymerization to achieve matrix chain segment penetration and interfacial stress transfer reinforcement. At 12 wt% filler loading, the composite achieved a thermal conductivity of 3.41 W m<sup>−1</sup> K<sup>−1</sup> (1605 % improvement over the matrix), along with compressive strength of 173 MPa, which breaks through the inverted performance limitations of polymer composites. This work provides a new material design paradigm for electronic packaging and aerospace lightweight structures and its cross-scale interface engineering strategy opens up new paths for the development of multifunctional composites.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"57 ","pages":"Article 102463"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermal and mechanical properties of polyamide-based carbon fiber composites via radial carbon network: Insights from microstructural engineering and interfacial compatibility\",\"authors\":\"Jiamei Liu ,&nbsp;Xiaohui Yang ,&nbsp;Shuaishuai Zhou ,&nbsp;Peng Zhang ,&nbsp;Tongle Xu ,&nbsp;Peng Ding\",\"doi\":\"10.1016/j.coco.2025.102463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The synergistic optimization of thermal management and mechanical properties is a central challenge for the application of carbon fiber composites in high power electronics and lightweight structures. In this study, a multiscale synergistic strategy of “radiation freezing-interfacial welding-in situ interlocking” was proposed to successfully prepare three-dimensional (3D) polyamide composites reinforced by radial carbon networks. Through directional freezing to induce the formation of radially oriented interpenetrating networks between carbon fibers and graphene oxide, combined with stepwise thermal reduction to construct carbon-carbon covalent interfaces, and in-situ polymerization to achieve matrix chain segment penetration and interfacial stress transfer reinforcement. At 12 wt% filler loading, the composite achieved a thermal conductivity of 3.41 W m<sup>−1</sup> K<sup>−1</sup> (1605 % improvement over the matrix), along with compressive strength of 173 MPa, which breaks through the inverted performance limitations of polymer composites. This work provides a new material design paradigm for electronic packaging and aerospace lightweight structures and its cross-scale interface engineering strategy opens up new paths for the development of multifunctional composites.</div></div>\",\"PeriodicalId\":10533,\"journal\":{\"name\":\"Composites Communications\",\"volume\":\"57 \",\"pages\":\"Article 102463\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452213925002165\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925002165","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

热管理和机械性能的协同优化是碳纤维复合材料在高功率电子和轻量化结构中应用的核心挑战。本研究提出了“辐射冻结-界面焊接-原位联锁”的多尺度协同策略,成功制备了径向碳网络增强的三维聚酰胺复合材料。通过定向冻结诱导碳纤维与氧化石墨烯形成径向定向互穿网络,结合逐步热还原构建碳-碳共价界面,并通过原位聚合实现基体链段渗透和界面应力传递强化。在填充量为12 wt%时,复合材料的导热系数为3.41 W m−1 K−1(比基体提高了1605%),抗压强度为173 MPa,突破了聚合物复合材料的反向性能限制。这项工作为电子封装和航空航天轻量化结构提供了新的材料设计范式,其跨尺度界面工程策略为多功能复合材料的发展开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced thermal and mechanical properties of polyamide-based carbon fiber composites via radial carbon network: Insights from microstructural engineering and interfacial compatibility
The synergistic optimization of thermal management and mechanical properties is a central challenge for the application of carbon fiber composites in high power electronics and lightweight structures. In this study, a multiscale synergistic strategy of “radiation freezing-interfacial welding-in situ interlocking” was proposed to successfully prepare three-dimensional (3D) polyamide composites reinforced by radial carbon networks. Through directional freezing to induce the formation of radially oriented interpenetrating networks between carbon fibers and graphene oxide, combined with stepwise thermal reduction to construct carbon-carbon covalent interfaces, and in-situ polymerization to achieve matrix chain segment penetration and interfacial stress transfer reinforcement. At 12 wt% filler loading, the composite achieved a thermal conductivity of 3.41 W m−1 K−1 (1605 % improvement over the matrix), along with compressive strength of 173 MPa, which breaks through the inverted performance limitations of polymer composites. This work provides a new material design paradigm for electronic packaging and aerospace lightweight structures and its cross-scale interface engineering strategy opens up new paths for the development of multifunctional composites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信