Yash Madhwal , Yury Yanovich , Aleksandra Korotkevich , Daria Parshina , Nshteh Seropian , Stepan Gavrilov , Alex Nikolaev , S. Balachander , A. Murugan
{"title":"通过无燃气交易,为b区块链中的自主物联网设备提供支持","authors":"Yash Madhwal , Yury Yanovich , Aleksandra Korotkevich , Daria Parshina , Nshteh Seropian , Stepan Gavrilov , Alex Nikolaev , S. Balachander , A. Murugan","doi":"10.1016/j.bcra.2024.100257","DOIUrl":null,"url":null,"abstract":"<div><div>The article introduces a proof-of-concept (PoC) that demonstrates the management of Internet of Things (IoT) devices' infrastructure via smart contracts, facilitating their interaction with the blockchain through gasless transactions. The focus is empowering IoT devices to autonomously sign transactions using their verified private keys, eliminating the necessity for external wallets and enabling blockchain interaction using Biconomy without incurring gas fees. In this PoC, managers can validate IoT devices, permitting them to transmit transactions securely without being able to manipulate measurements or risking losing crypto assets in case of hardware malfunctions. This innovative method ensures that devices with minimal funds can access sensor data and communicate with a smart contract on the blockchain to update information utilizing account abstraction. Detailed workflow and simulation results are provided to showcase the practicality and advantages of this approach in scenarios demanding seamless automated blockchain engagement through IoT devices. The PoC code is openly accessible on GitHub, enhancing the transparency and accessibility of our research outcomes.</div></div>","PeriodicalId":53141,"journal":{"name":"Blockchain-Research and Applications","volume":"6 2","pages":"Article 100257"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empowering autonomous IoT devices in blockchain through gasless transactions\",\"authors\":\"Yash Madhwal , Yury Yanovich , Aleksandra Korotkevich , Daria Parshina , Nshteh Seropian , Stepan Gavrilov , Alex Nikolaev , S. Balachander , A. Murugan\",\"doi\":\"10.1016/j.bcra.2024.100257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The article introduces a proof-of-concept (PoC) that demonstrates the management of Internet of Things (IoT) devices' infrastructure via smart contracts, facilitating their interaction with the blockchain through gasless transactions. The focus is empowering IoT devices to autonomously sign transactions using their verified private keys, eliminating the necessity for external wallets and enabling blockchain interaction using Biconomy without incurring gas fees. In this PoC, managers can validate IoT devices, permitting them to transmit transactions securely without being able to manipulate measurements or risking losing crypto assets in case of hardware malfunctions. This innovative method ensures that devices with minimal funds can access sensor data and communicate with a smart contract on the blockchain to update information utilizing account abstraction. Detailed workflow and simulation results are provided to showcase the practicality and advantages of this approach in scenarios demanding seamless automated blockchain engagement through IoT devices. The PoC code is openly accessible on GitHub, enhancing the transparency and accessibility of our research outcomes.</div></div>\",\"PeriodicalId\":53141,\"journal\":{\"name\":\"Blockchain-Research and Applications\",\"volume\":\"6 2\",\"pages\":\"Article 100257\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blockchain-Research and Applications\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096720924000708\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blockchain-Research and Applications","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096720924000708","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Empowering autonomous IoT devices in blockchain through gasless transactions
The article introduces a proof-of-concept (PoC) that demonstrates the management of Internet of Things (IoT) devices' infrastructure via smart contracts, facilitating their interaction with the blockchain through gasless transactions. The focus is empowering IoT devices to autonomously sign transactions using their verified private keys, eliminating the necessity for external wallets and enabling blockchain interaction using Biconomy without incurring gas fees. In this PoC, managers can validate IoT devices, permitting them to transmit transactions securely without being able to manipulate measurements or risking losing crypto assets in case of hardware malfunctions. This innovative method ensures that devices with minimal funds can access sensor data and communicate with a smart contract on the blockchain to update information utilizing account abstraction. Detailed workflow and simulation results are provided to showcase the practicality and advantages of this approach in scenarios demanding seamless automated blockchain engagement through IoT devices. The PoC code is openly accessible on GitHub, enhancing the transparency and accessibility of our research outcomes.
期刊介绍:
Blockchain: Research and Applications is an international, peer reviewed journal for researchers, engineers, and practitioners to present the latest advances and innovations in blockchain research. The journal publishes theoretical and applied papers in established and emerging areas of blockchain research to shape the future of blockchain technology.