有限生成模块的结构与未混合度

IF 0.7 2区 数学 Q2 MATHEMATICS
Nguyen Tu Cuong , Pham Hung Quy
{"title":"有限生成模块的结构与未混合度","authors":"Nguyen Tu Cuong ,&nbsp;Pham Hung Quy","doi":"10.1016/j.jpaa.2025.108000","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>R</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> be the homomorphic image of a Cohen-Macaulay local ring and <em>M</em> a finitely generated <em>R</em>-module. We use the splitting of local cohomology to shed a new light on the structure of non-Cohen-Macaulay modules. Namely, we show that every finitely generated <em>R</em>-module <em>M</em> is associated to a sequence of invariant modules. This module sequence expresses the deviation of <em>M</em> with the Cohen-Macaulay property. Our result generalizes the unmixed theorem of Cohen-Macaulayness for any finitely generated <em>R</em>-module. As an application we construct a new extended degree in the sense of Vasconcelos.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 108000"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the structure of finitely generated modules and the unmixed degrees\",\"authors\":\"Nguyen Tu Cuong ,&nbsp;Pham Hung Quy\",\"doi\":\"10.1016/j.jpaa.2025.108000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mo>(</mo><mi>R</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> be the homomorphic image of a Cohen-Macaulay local ring and <em>M</em> a finitely generated <em>R</em>-module. We use the splitting of local cohomology to shed a new light on the structure of non-Cohen-Macaulay modules. Namely, we show that every finitely generated <em>R</em>-module <em>M</em> is associated to a sequence of invariant modules. This module sequence expresses the deviation of <em>M</em> with the Cohen-Macaulay property. Our result generalizes the unmixed theorem of Cohen-Macaulayness for any finitely generated <em>R</em>-module. As an application we construct a new extended degree in the sense of Vasconcelos.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 108000\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404925001392\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001392","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设(R,m)为Cohen-Macaulay局部环的同态像,m为有限生成的R模。我们利用局部上同调的分裂来揭示非cohen - macaulay模的结构。也就是说,我们证明了每一个有限生成的r模M都与一个不变模序列相关联。该模块序列用Cohen-Macaulay性质表示M的偏差。我们的结果推广了任意有限生成r模的Cohen-Macaulayness非混合定理。作为一种应用,我们在Vasconcelos意义上构造了一个新的扩展度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the structure of finitely generated modules and the unmixed degrees
Let (R,m) be the homomorphic image of a Cohen-Macaulay local ring and M a finitely generated R-module. We use the splitting of local cohomology to shed a new light on the structure of non-Cohen-Macaulay modules. Namely, we show that every finitely generated R-module M is associated to a sequence of invariant modules. This module sequence expresses the deviation of M with the Cohen-Macaulay property. Our result generalizes the unmixed theorem of Cohen-Macaulayness for any finitely generated R-module. As an application we construct a new extended degree in the sense of Vasconcelos.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信