关于Hall子群的Arad-Ward定理的推广

IF 0.8 2区 数学 Q2 MATHEMATICS
N. Yang , A.A. Buturlakin
{"title":"关于Hall子群的Arad-Ward定理的推广","authors":"N. Yang ,&nbsp;A.A. Buturlakin","doi":"10.1016/j.jalgebra.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>For a set of primes <em>π</em>, denote by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> the class of finite groups containing a Hall <em>π</em>-subgroup. We establish that <span><math><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∩</mo><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is contained in <span><math><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>. As a corollary, we prove that if <em>π</em> is a set of primes, <em>l</em> is an integer such that <span><math><mn>2</mn><mo>⩽</mo><mi>l</mi><mo>&lt;</mo><mo>|</mo><mi>π</mi><mo>|</mo></math></span> and <em>G</em> is a finite group that contains a Hall <em>ρ</em>-subgroup for every subset <em>ρ</em> of <em>π</em> of size <em>l</em>, then <em>G</em> contains a solvable Hall <em>π</em>-subgroup.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"679 ","pages":"Pages 28-36"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of the Arad–Ward theorem on Hall subgroups\",\"authors\":\"N. Yang ,&nbsp;A.A. Buturlakin\",\"doi\":\"10.1016/j.jalgebra.2025.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For a set of primes <em>π</em>, denote by <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>π</mi></mrow></msub></math></span> the class of finite groups containing a Hall <em>π</em>-subgroup. We establish that <span><math><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∩</mo><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> is contained in <span><math><msub><mrow><mi>E</mi></mrow><mrow><msub><mrow><mi>π</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∩</mo><msub><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span>. As a corollary, we prove that if <em>π</em> is a set of primes, <em>l</em> is an integer such that <span><math><mn>2</mn><mo>⩽</mo><mi>l</mi><mo>&lt;</mo><mo>|</mo><mi>π</mi><mo>|</mo></math></span> and <em>G</em> is a finite group that contains a Hall <em>ρ</em>-subgroup for every subset <em>ρ</em> of <em>π</em> of size <em>l</em>, then <em>G</em> contains a solvable Hall <em>π</em>-subgroup.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"679 \",\"pages\":\"Pages 28-36\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325002649\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325002649","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于一组质数π,用π表示一类含有霍尔π子群的有限群。建立了π1∩π2包含在π1∩π2中。作为一个推论,我们证明了如果π是一个素数集合,l是一个整数,使得2≤l<;|π|,并且G是一个有限群,对于大小为l的π的每一个子集ρ都包含一个Hall ρ-子群,则G包含一个可解的Hall π-子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of the Arad–Ward theorem on Hall subgroups
For a set of primes π, denote by Eπ the class of finite groups containing a Hall π-subgroup. We establish that Eπ1Eπ2 is contained in Eπ1π2. As a corollary, we prove that if π is a set of primes, l is an integer such that 2l<|π| and G is a finite group that contains a Hall ρ-subgroup for every subset ρ of π of size l, then G contains a solvable Hall π-subgroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信