用梯形惯性微流控芯片临床分离乳腺癌循环肿瘤细胞

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zahra Sadeghi , Mohsen Nasr Esfahany , Hossein Salehi , Azar Baradaran
{"title":"用梯形惯性微流控芯片临床分离乳腺癌循环肿瘤细胞","authors":"Zahra Sadeghi ,&nbsp;Mohsen Nasr Esfahany ,&nbsp;Hossein Salehi ,&nbsp;Azar Baradaran","doi":"10.1016/j.bej.2025.109788","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, various detection and isolation methods for breast cancer have emerged. However, the lack of simple, unbiased separation techniques limits clinical applications of Circulating Tumor Cells (CTCs). This study introduces an inertial microfluidic chip with a trapezoidal cross-section for rapid, simple separation of MCF-7 CTCs from patient blood using an optimized SLA 3D printing technique. Simulations and experiments showed that increasing the slant angle enhances Dean vortices, with 1.2 mL/min as the optimal flow rate. Spiking MCF-7 cells into Phosphate-Buffered Saline (PBS) yielded a recovery rate of 88 ± 3.5 % and a purity of 99.99 %. When spiked into 7.5 mL lysed blood, the recovery was 86 ± 2.9 % and purity 94 ± 2.3 %, with over 90 % of cells remaining viable. Clinically, the chip detected MCF-7 cells in 8 out of 10 breast cancer patients (80 %), with cell counts ranging from 2 to 21 cells/mL and purities between 89 ± 1.6 % and 92 ± 5.8 %. These results confirm the chip’s high sensitivity and viability preservation. This straightforward inertial microfluidic method offers a promising alternative to traditional affinity-based CTC separation, supporting fundamental research and aiding patient treatment strategies.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"221 ","pages":"Article 109788"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical isolation of breast cancer Circulating Tumor Cells with an inertial microfluidic chip with a trapezoidal cross-section\",\"authors\":\"Zahra Sadeghi ,&nbsp;Mohsen Nasr Esfahany ,&nbsp;Hossein Salehi ,&nbsp;Azar Baradaran\",\"doi\":\"10.1016/j.bej.2025.109788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, various detection and isolation methods for breast cancer have emerged. However, the lack of simple, unbiased separation techniques limits clinical applications of Circulating Tumor Cells (CTCs). This study introduces an inertial microfluidic chip with a trapezoidal cross-section for rapid, simple separation of MCF-7 CTCs from patient blood using an optimized SLA 3D printing technique. Simulations and experiments showed that increasing the slant angle enhances Dean vortices, with 1.2 mL/min as the optimal flow rate. Spiking MCF-7 cells into Phosphate-Buffered Saline (PBS) yielded a recovery rate of 88 ± 3.5 % and a purity of 99.99 %. When spiked into 7.5 mL lysed blood, the recovery was 86 ± 2.9 % and purity 94 ± 2.3 %, with over 90 % of cells remaining viable. Clinically, the chip detected MCF-7 cells in 8 out of 10 breast cancer patients (80 %), with cell counts ranging from 2 to 21 cells/mL and purities between 89 ± 1.6 % and 92 ± 5.8 %. These results confirm the chip’s high sensitivity and viability preservation. This straightforward inertial microfluidic method offers a promising alternative to traditional affinity-based CTC separation, supporting fundamental research and aiding patient treatment strategies.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"221 \",\"pages\":\"Article 109788\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X25001627\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25001627","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,出现了各种乳腺癌的检测和分离方法。然而,缺乏简单、公正的分离技术限制了循环肿瘤细胞(CTCs)的临床应用。本研究介绍了一种具有梯形截面的惯性微流控芯片,该芯片可使用优化的SLA 3D打印技术快速、简单地从患者血液中分离MCF-7 ctc。模拟和实验结果表明,增大倾斜角度可以增强Dean涡,最佳流量为1.2 mL/min。将MCF-7细胞注入磷酸盐缓冲盐水(PBS)中,回收率为88 ± 3.5 %,纯度为99.99 %。加入7.5 mL溶血中,回收率为86 ± 2.9 %,纯度为94 ± 2.3 %,细胞存活率超过90 %。临床上,该芯片在10例乳腺癌患者中检测到8例MCF-7细胞(80 %),细胞计数范围为2 ~ 21个细胞/mL,纯度为89 ± 1.6 % ~ 92 ± 5.8 %。这些结果证实了芯片的高灵敏度和活力保存。这种直接的惯性微流体方法为传统的基于亲和力的CTC分离提供了一种有希望的替代方法,支持基础研究并帮助患者治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clinical isolation of breast cancer Circulating Tumor Cells with an inertial microfluidic chip with a trapezoidal cross-section
In recent years, various detection and isolation methods for breast cancer have emerged. However, the lack of simple, unbiased separation techniques limits clinical applications of Circulating Tumor Cells (CTCs). This study introduces an inertial microfluidic chip with a trapezoidal cross-section for rapid, simple separation of MCF-7 CTCs from patient blood using an optimized SLA 3D printing technique. Simulations and experiments showed that increasing the slant angle enhances Dean vortices, with 1.2 mL/min as the optimal flow rate. Spiking MCF-7 cells into Phosphate-Buffered Saline (PBS) yielded a recovery rate of 88 ± 3.5 % and a purity of 99.99 %. When spiked into 7.5 mL lysed blood, the recovery was 86 ± 2.9 % and purity 94 ± 2.3 %, with over 90 % of cells remaining viable. Clinically, the chip detected MCF-7 cells in 8 out of 10 breast cancer patients (80 %), with cell counts ranging from 2 to 21 cells/mL and purities between 89 ± 1.6 % and 92 ± 5.8 %. These results confirm the chip’s high sensitivity and viability preservation. This straightforward inertial microfluidic method offers a promising alternative to traditional affinity-based CTC separation, supporting fundamental research and aiding patient treatment strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信