微重力将蜡样芽孢杆菌1272转化为更具弹性的感染性病原体

Debarchan Mondal , Sudip Baran Haiti , Pinaki Biswas , Sakshi Singh , Niloy Chatterjee , Debjyoti Paul , Kakoli Singh Sardar , Asish Kumar Mukhopadhyay , Suvro Chatterjee , Pubali Dhar
{"title":"微重力将蜡样芽孢杆菌1272转化为更具弹性的感染性病原体","authors":"Debarchan Mondal ,&nbsp;Sudip Baran Haiti ,&nbsp;Pinaki Biswas ,&nbsp;Sakshi Singh ,&nbsp;Niloy Chatterjee ,&nbsp;Debjyoti Paul ,&nbsp;Kakoli Singh Sardar ,&nbsp;Asish Kumar Mukhopadhyay ,&nbsp;Suvro Chatterjee ,&nbsp;Pubali Dhar","doi":"10.1016/j.microb.2025.100381","DOIUrl":null,"url":null,"abstract":"<div><div>The microgravity environment of the International Space Station (ISS) provides unique and vistas of opportunities for cutting-edge research in biological systems. Weightlessness profoundly influences physical and biological processes, making it a critical area of scientific research. This study examined the response of <em>Bacillus cereus</em> 1272, a significant food-borne pathogen, to simulated microgravity conditions through comprehensive <em>in vitro</em> (microbial growth kinetics, biofilm assay and antimicrobial assay) and <em>in situ</em> (bacterial survival assays within real food system) analyses. Investigations focused on multiple physiological parameters, including growth characteristics, cellular responses to cold stress, membrane fatty acid composition, morphological changes, biofilm production, and antimicrobial susceptibility. During a 24 h experimental period, <em>B. cereus</em> 1272 demonstrated significant adaptations under microgravity conditions compared to standard gravity environments. Key findings revealed a notably higher bacterial growth rate and increased membrane fatty acid unsaturation in microgravity. Substantial modifications were observed in cellular morphology, aggregation patterns, and biofilm formation. Critically, antimicrobial resistance significantly amplified under simulated microgravity conditions, presenting important implications for astronaut health, food safety during space missions, and potential challenges in long-duration space exploration. These results underscore the complex bacterial adaptive mechanisms in microgravity and highlight the necessity of understanding pathogen behavior in extraterrestrial environments, particularly for future interplanetary travel and extended space missions.</div></div>","PeriodicalId":101246,"journal":{"name":"The Microbe","volume":"7 ","pages":"Article 100381"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microgravity transforms Bacillus cereus 1272 into a more resilient infectious pathogen\",\"authors\":\"Debarchan Mondal ,&nbsp;Sudip Baran Haiti ,&nbsp;Pinaki Biswas ,&nbsp;Sakshi Singh ,&nbsp;Niloy Chatterjee ,&nbsp;Debjyoti Paul ,&nbsp;Kakoli Singh Sardar ,&nbsp;Asish Kumar Mukhopadhyay ,&nbsp;Suvro Chatterjee ,&nbsp;Pubali Dhar\",\"doi\":\"10.1016/j.microb.2025.100381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The microgravity environment of the International Space Station (ISS) provides unique and vistas of opportunities for cutting-edge research in biological systems. Weightlessness profoundly influences physical and biological processes, making it a critical area of scientific research. This study examined the response of <em>Bacillus cereus</em> 1272, a significant food-borne pathogen, to simulated microgravity conditions through comprehensive <em>in vitro</em> (microbial growth kinetics, biofilm assay and antimicrobial assay) and <em>in situ</em> (bacterial survival assays within real food system) analyses. Investigations focused on multiple physiological parameters, including growth characteristics, cellular responses to cold stress, membrane fatty acid composition, morphological changes, biofilm production, and antimicrobial susceptibility. During a 24 h experimental period, <em>B. cereus</em> 1272 demonstrated significant adaptations under microgravity conditions compared to standard gravity environments. Key findings revealed a notably higher bacterial growth rate and increased membrane fatty acid unsaturation in microgravity. Substantial modifications were observed in cellular morphology, aggregation patterns, and biofilm formation. Critically, antimicrobial resistance significantly amplified under simulated microgravity conditions, presenting important implications for astronaut health, food safety during space missions, and potential challenges in long-duration space exploration. These results underscore the complex bacterial adaptive mechanisms in microgravity and highlight the necessity of understanding pathogen behavior in extraterrestrial environments, particularly for future interplanetary travel and extended space missions.</div></div>\",\"PeriodicalId\":101246,\"journal\":{\"name\":\"The Microbe\",\"volume\":\"7 \",\"pages\":\"Article 100381\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Microbe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950194625001499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Microbe","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950194625001499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

国际空间站(ISS)的微重力环境为生物系统的前沿研究提供了独特的机会和前景。失重深刻地影响着物理和生物过程,使其成为科学研究的一个关键领域。本研究通过全面的体外(微生物生长动力学、生物膜试验和抗菌试验)和原位(真实食物系统中的细菌生存试验)分析,研究了蜡样芽孢杆菌1272(一种重要的食源性病原体)对模拟微重力条件的反应。研究集中于多种生理参数,包括生长特性、细胞对冷胁迫的反应、膜脂肪酸组成、形态变化、生物膜生成和抗菌药物敏感性。在24 h的实验期间,与标准重力环境相比,蜡样芽孢杆菌1272在微重力条件下表现出显著的适应性。主要研究结果显示,微重力环境下细菌生长速度明显加快,膜脂肪酸不饱和度增加。在细胞形态、聚集模式和生物膜形成方面观察到实质性的改变。至关重要的是,在模拟微重力条件下,抗菌素耐药性显著增强,这对宇航员健康、太空任务期间的食品安全以及长期太空探索中的潜在挑战产生了重要影响。这些结果强调了微重力环境下复杂的细菌适应机制,并强调了了解地外环境中病原体行为的必要性,特别是对于未来的行星际旅行和扩展的太空任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microgravity transforms Bacillus cereus 1272 into a more resilient infectious pathogen
The microgravity environment of the International Space Station (ISS) provides unique and vistas of opportunities for cutting-edge research in biological systems. Weightlessness profoundly influences physical and biological processes, making it a critical area of scientific research. This study examined the response of Bacillus cereus 1272, a significant food-borne pathogen, to simulated microgravity conditions through comprehensive in vitro (microbial growth kinetics, biofilm assay and antimicrobial assay) and in situ (bacterial survival assays within real food system) analyses. Investigations focused on multiple physiological parameters, including growth characteristics, cellular responses to cold stress, membrane fatty acid composition, morphological changes, biofilm production, and antimicrobial susceptibility. During a 24 h experimental period, B. cereus 1272 demonstrated significant adaptations under microgravity conditions compared to standard gravity environments. Key findings revealed a notably higher bacterial growth rate and increased membrane fatty acid unsaturation in microgravity. Substantial modifications were observed in cellular morphology, aggregation patterns, and biofilm formation. Critically, antimicrobial resistance significantly amplified under simulated microgravity conditions, presenting important implications for astronaut health, food safety during space missions, and potential challenges in long-duration space exploration. These results underscore the complex bacterial adaptive mechanisms in microgravity and highlight the necessity of understanding pathogen behavior in extraterrestrial environments, particularly for future interplanetary travel and extended space missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信