具有代数奇点和柯西奇点的振荡贝塞尔变换的数值方法

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yingying Jia, Hongchao Kang
{"title":"具有代数奇点和柯西奇点的振荡贝塞尔变换的数值方法","authors":"Yingying Jia,&nbsp;Hongchao Kang","doi":"10.1016/j.amc.2025.129523","DOIUrl":null,"url":null,"abstract":"<div><div>This article proposes and analyzes fast and precise numerical methods for calculating the Bessel integral, which exhibits rapid oscillations and includes algebraic and Cauchy singularities. When <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, we utilize the numerical steepest descent method with the Gauss-Laguerre quadrature formula to solve it. If <span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>, we partition the integral into two parts, solving each part using the modified Filon-type method and the numerical steepest descent method, respectively. Moreover, the strict error analysis with respect to the frequency parameter <em>ω</em> is provided via a plenty of theoretical analysis. Finally, the efficiency and precision of these proposed methods are validated by numerical examples.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"505 ","pages":"Article 129523"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical methods of oscillatory Bessel transforms with algebraic and Cauchy singularities\",\"authors\":\"Yingying Jia,&nbsp;Hongchao Kang\",\"doi\":\"10.1016/j.amc.2025.129523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article proposes and analyzes fast and precise numerical methods for calculating the Bessel integral, which exhibits rapid oscillations and includes algebraic and Cauchy singularities. When <span><math><mi>a</mi><mo>&gt;</mo><mn>0</mn></math></span>, we utilize the numerical steepest descent method with the Gauss-Laguerre quadrature formula to solve it. If <span><math><mi>a</mi><mo>=</mo><mn>0</mn></math></span>, we partition the integral into two parts, solving each part using the modified Filon-type method and the numerical steepest descent method, respectively. Moreover, the strict error analysis with respect to the frequency parameter <em>ω</em> is provided via a plenty of theoretical analysis. Finally, the efficiency and precision of these proposed methods are validated by numerical examples.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"505 \",\"pages\":\"Article 129523\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325002498\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002498","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并分析了计算贝塞尔积分的快速、精确的数值方法。贝塞尔积分具有快速振荡,包括代数奇点和柯西奇点。当a>;0时,我们利用数值最陡下降法与高斯-拉盖尔正交公式求解。当a=0时,我们将积分分成两部分,分别使用改进的filon型法和数值最陡下降法求解每一部分。此外,通过大量的理论分析,对频率参数ω进行了严格的误差分析。最后,通过数值算例验证了所提方法的有效性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical methods of oscillatory Bessel transforms with algebraic and Cauchy singularities
This article proposes and analyzes fast and precise numerical methods for calculating the Bessel integral, which exhibits rapid oscillations and includes algebraic and Cauchy singularities. When a>0, we utilize the numerical steepest descent method with the Gauss-Laguerre quadrature formula to solve it. If a=0, we partition the integral into two parts, solving each part using the modified Filon-type method and the numerical steepest descent method, respectively. Moreover, the strict error analysis with respect to the frequency parameter ω is provided via a plenty of theoretical analysis. Finally, the efficiency and precision of these proposed methods are validated by numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信