{"title":"Ag纳米颗粒均匀锚定在凹凸棒土纳米片上,协同提高了BF/PTFE织物复合材料的摩擦学性能","authors":"Hao Chen , Zhaozhu Zhang , Yaohui He , Chaoying Liao , Yue Zhang , Mingming Yang , Fanjie Chu , Junya Yuan","doi":"10.1016/j.compositesa.2025.109017","DOIUrl":null,"url":null,"abstract":"<div><div>Liner composites (LC) are susceptible to damage under the rigours of heavy loads. Attapulgite, as a one-dimensional clay mineral, has been used as a reinforcing filler for fabric composites to overcome this defect due to its friction chemistry and rolling effect. Attapulgite nanosheets, as a novel two-dimensional material, have both the characteristics of clay and the ability to exploit the susceptibility of two-dimensional materials to interlayer slip. Therefore, in this work, a nanosheet (AT-NS) with uniform size was synthesized and applied for the first time in the field of friction. The AT-NS surface was loaded with AgNPs to construct AT-NS/Ag hybrids in order to achieve synergistic effects between 0D and 2D materials in the hybrid filler. The interlayer slip of the 2D AT-NS counteracted part of the shear force, and the AT-NS as well as its released Ag nanoparticles participated in the formation of the transfer film. For the tribological property tests of the composites, the wear rate and friction coefficient of the AT-NS/Ag1 composites with 2.0 wt% addition were reduced by 89.59 % and 9.5 % at 87.4 Mpa, respectively.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"197 ","pages":"Article 109017"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ag nanoparticles uniformly anchored on attapulgite nanosheets synergistically improve the tribological properties of BF/PTFE fabric composites\",\"authors\":\"Hao Chen , Zhaozhu Zhang , Yaohui He , Chaoying Liao , Yue Zhang , Mingming Yang , Fanjie Chu , Junya Yuan\",\"doi\":\"10.1016/j.compositesa.2025.109017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liner composites (LC) are susceptible to damage under the rigours of heavy loads. Attapulgite, as a one-dimensional clay mineral, has been used as a reinforcing filler for fabric composites to overcome this defect due to its friction chemistry and rolling effect. Attapulgite nanosheets, as a novel two-dimensional material, have both the characteristics of clay and the ability to exploit the susceptibility of two-dimensional materials to interlayer slip. Therefore, in this work, a nanosheet (AT-NS) with uniform size was synthesized and applied for the first time in the field of friction. The AT-NS surface was loaded with AgNPs to construct AT-NS/Ag hybrids in order to achieve synergistic effects between 0D and 2D materials in the hybrid filler. The interlayer slip of the 2D AT-NS counteracted part of the shear force, and the AT-NS as well as its released Ag nanoparticles participated in the formation of the transfer film. For the tribological property tests of the composites, the wear rate and friction coefficient of the AT-NS/Ag1 composites with 2.0 wt% addition were reduced by 89.59 % and 9.5 % at 87.4 Mpa, respectively.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"197 \",\"pages\":\"Article 109017\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25003112\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25003112","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Ag nanoparticles uniformly anchored on attapulgite nanosheets synergistically improve the tribological properties of BF/PTFE fabric composites
Liner composites (LC) are susceptible to damage under the rigours of heavy loads. Attapulgite, as a one-dimensional clay mineral, has been used as a reinforcing filler for fabric composites to overcome this defect due to its friction chemistry and rolling effect. Attapulgite nanosheets, as a novel two-dimensional material, have both the characteristics of clay and the ability to exploit the susceptibility of two-dimensional materials to interlayer slip. Therefore, in this work, a nanosheet (AT-NS) with uniform size was synthesized and applied for the first time in the field of friction. The AT-NS surface was loaded with AgNPs to construct AT-NS/Ag hybrids in order to achieve synergistic effects between 0D and 2D materials in the hybrid filler. The interlayer slip of the 2D AT-NS counteracted part of the shear force, and the AT-NS as well as its released Ag nanoparticles participated in the formation of the transfer film. For the tribological property tests of the composites, the wear rate and friction coefficient of the AT-NS/Ag1 composites with 2.0 wt% addition were reduced by 89.59 % and 9.5 % at 87.4 Mpa, respectively.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.