Sanjita Wasti , Caitlyn Clarkson , Eric Johnston , Yunqiao Pu , Samarthya Bhagia , Halil Tekinalp , Soydan Ozcan , Uday Vaidya
{"title":"不连续天然纤维的施胶:施胶方式和施胶浓度对复合材料性能的影响","authors":"Sanjita Wasti , Caitlyn Clarkson , Eric Johnston , Yunqiao Pu , Samarthya Bhagia , Halil Tekinalp , Soydan Ozcan , Uday Vaidya","doi":"10.1016/j.compositesa.2025.109029","DOIUrl":null,"url":null,"abstract":"<div><div>Natural fiber reinforced composites (NFRCs) are gaining attention in automotive applications as an alternative to glass fiber composites due to their lightweight and renewable sourcing. However, the inherent hydrophilicity of natural fibers leads to poor compatibility with hydrophobic polymers which adversely affects the mechanical properties of the composites and can limit their application to non-structural parts. Sizing is a common approach used for synthetic fibers to improve the interface between fiber and matrix. However, there is limited study on the sizing of natural fibers, and hence the focus of this work. In this study, two different approaches to sizing discontinuous coir fibers were investigated, namely; (1) ex-situ sizing and (2) in-situ sizing. A commercial polypropylene (PP) based sizing agent was used and the effects of varying sizing solution concentrations (1.5, 2.5, and 3.5 wt%) on the properties of the composites was studied. Results showed that composites prepared via the in-situ sizing process had better fiber–matrix adhesion and improved tensile properties compared to ex-situ sized composites. On studying the effect of different sizing concentrations on composite properties, we found that the tensile strength of the composites increased (by ∼ 42 %) up to 2.5 wt% sizing concentration (in solution) and then decreased. However, the impact strength decreased significantly on increasing the sizing content beyond 1.5 wt% (by ∼ 40 %). Additionally, the study was further extended to investigate the effect of sizing on different NFRCs (coir, banana, and cottonized hemp fiber) where effectiveness of sizing was found to be influenced by the fiber surface morphology.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"197 ","pages":"Article 109029"},"PeriodicalIF":8.1000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sizing of discontinuous natural fibers: Effect of sizing approach and sizing concentration on composite properties\",\"authors\":\"Sanjita Wasti , Caitlyn Clarkson , Eric Johnston , Yunqiao Pu , Samarthya Bhagia , Halil Tekinalp , Soydan Ozcan , Uday Vaidya\",\"doi\":\"10.1016/j.compositesa.2025.109029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural fiber reinforced composites (NFRCs) are gaining attention in automotive applications as an alternative to glass fiber composites due to their lightweight and renewable sourcing. However, the inherent hydrophilicity of natural fibers leads to poor compatibility with hydrophobic polymers which adversely affects the mechanical properties of the composites and can limit their application to non-structural parts. Sizing is a common approach used for synthetic fibers to improve the interface between fiber and matrix. However, there is limited study on the sizing of natural fibers, and hence the focus of this work. In this study, two different approaches to sizing discontinuous coir fibers were investigated, namely; (1) ex-situ sizing and (2) in-situ sizing. A commercial polypropylene (PP) based sizing agent was used and the effects of varying sizing solution concentrations (1.5, 2.5, and 3.5 wt%) on the properties of the composites was studied. Results showed that composites prepared via the in-situ sizing process had better fiber–matrix adhesion and improved tensile properties compared to ex-situ sized composites. On studying the effect of different sizing concentrations on composite properties, we found that the tensile strength of the composites increased (by ∼ 42 %) up to 2.5 wt% sizing concentration (in solution) and then decreased. However, the impact strength decreased significantly on increasing the sizing content beyond 1.5 wt% (by ∼ 40 %). Additionally, the study was further extended to investigate the effect of sizing on different NFRCs (coir, banana, and cottonized hemp fiber) where effectiveness of sizing was found to be influenced by the fiber surface morphology.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"197 \",\"pages\":\"Article 109029\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25003239\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25003239","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Sizing of discontinuous natural fibers: Effect of sizing approach and sizing concentration on composite properties
Natural fiber reinforced composites (NFRCs) are gaining attention in automotive applications as an alternative to glass fiber composites due to their lightweight and renewable sourcing. However, the inherent hydrophilicity of natural fibers leads to poor compatibility with hydrophobic polymers which adversely affects the mechanical properties of the composites and can limit their application to non-structural parts. Sizing is a common approach used for synthetic fibers to improve the interface between fiber and matrix. However, there is limited study on the sizing of natural fibers, and hence the focus of this work. In this study, two different approaches to sizing discontinuous coir fibers were investigated, namely; (1) ex-situ sizing and (2) in-situ sizing. A commercial polypropylene (PP) based sizing agent was used and the effects of varying sizing solution concentrations (1.5, 2.5, and 3.5 wt%) on the properties of the composites was studied. Results showed that composites prepared via the in-situ sizing process had better fiber–matrix adhesion and improved tensile properties compared to ex-situ sized composites. On studying the effect of different sizing concentrations on composite properties, we found that the tensile strength of the composites increased (by ∼ 42 %) up to 2.5 wt% sizing concentration (in solution) and then decreased. However, the impact strength decreased significantly on increasing the sizing content beyond 1.5 wt% (by ∼ 40 %). Additionally, the study was further extended to investigate the effect of sizing on different NFRCs (coir, banana, and cottonized hemp fiber) where effectiveness of sizing was found to be influenced by the fiber surface morphology.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.