Chang-Long Wang , Zi-Jia Wang , Yi-Biao Huang , Dan-Ting Duan , Zhi-Hui Zhan , Sam Kwong , Jun Zhang
{"title":"多模态优化问题的双阶段学习差分进化","authors":"Chang-Long Wang , Zi-Jia Wang , Yi-Biao Huang , Dan-Ting Duan , Zhi-Hui Zhan , Sam Kwong , Jun Zhang","doi":"10.1016/j.swevo.2025.101974","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal optimization problems (MMOPs) require the identification of multiple optimal solutions for decision makers. To address MMOPs, algorithms must enhance the population diversity to find more global optimal regions while simultaneously refine the solution accuracy on each optimum. Therefore, in this paper, we introduces a bi-stage learning differential evolution (BLDE) with two learning stages: the pre-learning <em>Find</em> stage and the post-learning <em>Refine</em> stage. First of all, a bi-stage learning niching technique (BLNT) is proposed, which forms wide niches for full exploration in the pre-learning <em>Find</em> stage, while adaptively adjusts the niche radius for each individual to refine its corresponding solution accuracy in the post-learning <em>Refine</em> stage. Subsequently, a bi-stage learning mutation strategy (BLMS) is developed, enabling each individual to adaptively choose the suitable mutation strategy, achieving effective guidance for evolution. Moreover, different from other DE-based multimodal algorithms with only one selection operator, a bi-stage learning selection strategy (BLSS) is proposed to determine the suitable selection operator in different learning stages and preserve the promising individuals. The widely-used multimodal benchmark functions from CEC2015 competition are employed to evaluate the performance of BLDE. The results demonstrate that BLDE generally outperforms or at least comparable with other state-of-the-art multimodal algorithms, including the champion of CEC2015 competition. Moreover, BLDE is further applied to the real-world multimodal nonlinear equation system (NES) problems to demonstrate its applicability.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"96 ","pages":"Article 101974"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-stage learning differential evolution for multimodal optimization problems\",\"authors\":\"Chang-Long Wang , Zi-Jia Wang , Yi-Biao Huang , Dan-Ting Duan , Zhi-Hui Zhan , Sam Kwong , Jun Zhang\",\"doi\":\"10.1016/j.swevo.2025.101974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multimodal optimization problems (MMOPs) require the identification of multiple optimal solutions for decision makers. To address MMOPs, algorithms must enhance the population diversity to find more global optimal regions while simultaneously refine the solution accuracy on each optimum. Therefore, in this paper, we introduces a bi-stage learning differential evolution (BLDE) with two learning stages: the pre-learning <em>Find</em> stage and the post-learning <em>Refine</em> stage. First of all, a bi-stage learning niching technique (BLNT) is proposed, which forms wide niches for full exploration in the pre-learning <em>Find</em> stage, while adaptively adjusts the niche radius for each individual to refine its corresponding solution accuracy in the post-learning <em>Refine</em> stage. Subsequently, a bi-stage learning mutation strategy (BLMS) is developed, enabling each individual to adaptively choose the suitable mutation strategy, achieving effective guidance for evolution. Moreover, different from other DE-based multimodal algorithms with only one selection operator, a bi-stage learning selection strategy (BLSS) is proposed to determine the suitable selection operator in different learning stages and preserve the promising individuals. The widely-used multimodal benchmark functions from CEC2015 competition are employed to evaluate the performance of BLDE. The results demonstrate that BLDE generally outperforms or at least comparable with other state-of-the-art multimodal algorithms, including the champion of CEC2015 competition. Moreover, BLDE is further applied to the real-world multimodal nonlinear equation system (NES) problems to demonstrate its applicability.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"96 \",\"pages\":\"Article 101974\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650225001324\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650225001324","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bi-stage learning differential evolution for multimodal optimization problems
Multimodal optimization problems (MMOPs) require the identification of multiple optimal solutions for decision makers. To address MMOPs, algorithms must enhance the population diversity to find more global optimal regions while simultaneously refine the solution accuracy on each optimum. Therefore, in this paper, we introduces a bi-stage learning differential evolution (BLDE) with two learning stages: the pre-learning Find stage and the post-learning Refine stage. First of all, a bi-stage learning niching technique (BLNT) is proposed, which forms wide niches for full exploration in the pre-learning Find stage, while adaptively adjusts the niche radius for each individual to refine its corresponding solution accuracy in the post-learning Refine stage. Subsequently, a bi-stage learning mutation strategy (BLMS) is developed, enabling each individual to adaptively choose the suitable mutation strategy, achieving effective guidance for evolution. Moreover, different from other DE-based multimodal algorithms with only one selection operator, a bi-stage learning selection strategy (BLSS) is proposed to determine the suitable selection operator in different learning stages and preserve the promising individuals. The widely-used multimodal benchmark functions from CEC2015 competition are employed to evaluate the performance of BLDE. The results demonstrate that BLDE generally outperforms or at least comparable with other state-of-the-art multimodal algorithms, including the champion of CEC2015 competition. Moreover, BLDE is further applied to the real-world multimodal nonlinear equation system (NES) problems to demonstrate its applicability.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.