{"title":"θ-次幂及其和的分布","authors":"Siddharth Iyer","doi":"10.1016/j.jmaa.2025.129672","DOIUrl":null,"url":null,"abstract":"<div><div>We refine a remark of Steinerberger (2024), proving that for <span><math><mi>α</mi><mo>∈</mo><mi>R</mi></math></span>, there exist integers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span> such that<span><span><span><math><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msqrt><mo>−</mo><mi>α</mi><mo>‖</mo></mrow><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in <span><math><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></math></span>, yielding a modulo one result with <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and bounded gaps for <span><math><mi>θ</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>. We also establish a metric result for general <span><math><mi>θ</mi><mo>></mo><mn>0</mn></math></span> and identify exceptional values, thereby resolving a question of Dubickas (2024).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129672"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of θ-powers and their sums\",\"authors\":\"Siddharth Iyer\",\"doi\":\"10.1016/j.jmaa.2025.129672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We refine a remark of Steinerberger (2024), proving that for <span><math><mi>α</mi><mo>∈</mo><mi>R</mi></math></span>, there exist integers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span> such that<span><span><span><math><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msqrt><mo>−</mo><mi>α</mi><mo>‖</mo></mrow><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in <span><math><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></math></span>, yielding a modulo one result with <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and bounded gaps for <span><math><mi>θ</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>. We also establish a metric result for general <span><math><mi>θ</mi><mo>></mo><mn>0</mn></math></span> and identify exceptional values, thereby resolving a question of Dubickas (2024).</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129672\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004536\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004536","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We refine a remark of Steinerberger (2024), proving that for , there exist integers such that where , , and for . We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in , yielding a modulo one result with and bounded gaps for . We also establish a metric result for general and identify exceptional values, thereby resolving a question of Dubickas (2024).
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.