θ-次幂及其和的分布

IF 1.2 3区 数学 Q1 MATHEMATICS
Siddharth Iyer
{"title":"θ-次幂及其和的分布","authors":"Siddharth Iyer","doi":"10.1016/j.jmaa.2025.129672","DOIUrl":null,"url":null,"abstract":"<div><div>We refine a remark of Steinerberger (2024), proving that for <span><math><mi>α</mi><mo>∈</mo><mi>R</mi></math></span>, there exist integers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span> such that<span><span><span><math><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msqrt><mo>−</mo><mi>α</mi><mo>‖</mo></mrow><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in <span><math><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></math></span>, yielding a modulo one result with <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and bounded gaps for <span><math><mi>θ</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>. We also establish a metric result for general <span><math><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math></span> and identify exceptional values, thereby resolving a question of Dubickas (2024).</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 1","pages":"Article 129672"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of θ-powers and their sums\",\"authors\":\"Siddharth Iyer\",\"doi\":\"10.1016/j.jmaa.2025.129672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We refine a remark of Steinerberger (2024), proving that for <span><math><mi>α</mi><mo>∈</mo><mi>R</mi></math></span>, there exist integers <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>n</mi></math></span> such that<span><span><span><math><mrow><mo>‖</mo><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></munderover><msqrt><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></msqrt><mo>−</mo><mi>α</mi><mo>‖</mo></mrow><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≥</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></math></span>, <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span>, and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>=</mo><mi>k</mi><mo>/</mo><mn>2</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in <span><math><mo>{</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mi>θ</mi></mrow></msup><mo>:</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>N</mi><mo>∪</mo><mo>{</mo><mn>0</mn><mo>}</mo><mo>}</mo></math></span>, yielding a modulo one result with <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and bounded gaps for <span><math><mi>θ</mi><mo>=</mo><mn>3</mn><mo>/</mo><mn>2</mn></math></span>. We also establish a metric result for general <span><math><mi>θ</mi><mo>&gt;</mo><mn>0</mn></math></span> and identify exceptional values, thereby resolving a question of Dubickas (2024).</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"551 1\",\"pages\":\"Article 129672\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25004536\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004536","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们改进了Steinerberger(2024)的一个注释,证明对于α∈R,存在整数1≤b1,…,bk≤n,使得‖∑j=1kbj−α‖=O(n−γk),其中γk≥(k−1)/4,γ2=1,对于k=2m−1,γk=k/2。我们把它推广到高阶根。在Bambah-Chowla定理的基础上,我们研究了{xθ+yθ:x,y∈N∪{0}}中的间隙,得到了一个当γ2=1时模1的结果和当θ=3/2时有界间隙的结果。我们还为一般θ>;0建立了一个度量结果,并确定了异常值,从而解决了Dubickas(2024)的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of θ-powers and their sums
We refine a remark of Steinerberger (2024), proving that for αR, there exist integers 1b1,,bkn such thatj=1kbjα=O(nγk), where γk(k1)/4, γ2=1, and γk=k/2 for k=2m1. We extend this to higher-order roots. Building on the Bambah–Chowla theorem, we study gaps in {xθ+yθ:x,yN{0}}, yielding a modulo one result with γ2=1 and bounded gaps for θ=3/2. We also establish a metric result for general θ>0 and identify exceptional values, thereby resolving a question of Dubickas (2024).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信