探索铈掺杂氧化锆的亚稳相:来自x射线衍射、拉曼、x射线吸收和发光光谱的见解

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Luiza B. F. dos Santos, Volodymyr Svitlyk, Selina Richter, Christoph Hennig, Katharina Müller, Elena F. Bazarkina, Kristina O. Kvashnina, Thorsten Stumpf and Nina Huittinen*, 
{"title":"探索铈掺杂氧化锆的亚稳相:来自x射线衍射、拉曼、x射线吸收和发光光谱的见解","authors":"Luiza B. F. dos Santos,&nbsp;Volodymyr Svitlyk,&nbsp;Selina Richter,&nbsp;Christoph Hennig,&nbsp;Katharina Müller,&nbsp;Elena F. Bazarkina,&nbsp;Kristina O. Kvashnina,&nbsp;Thorsten Stumpf and Nina Huittinen*,&nbsp;","doi":"10.1021/acs.inorgchem.5c0086510.1021/acs.inorgchem.5c00865","DOIUrl":null,"url":null,"abstract":"<p >The ZrO<sub>2</sub>–CeO<sub>2</sub> system is fundamental to various technological applications, yet unresolved questions persist regarding cation miscibility and the occurrence of metastable phases in the Zr<sub>1–<i>x</i></sub>Ce<sub><i>x</i></sub>O<sub>2</sub> phase diagram. This work addresses these gaps through a comprehensive investigation of Zr<sub>1–<i>x</i></sub>Ce<sub><i>x</i></sub>O<sub>2</sub> compositions with varying cerium concentrations and incorporating Eu<sup>3+</sup> as a luminescent probe. Synchrotron powder X-ray diffraction analysis unveiled a miscibility gap between 20 and 50 mol % cerium. Beyond this gap, the formation of solid solutions and multiple crystalline phases was observed, including tetragonal prime (t′) and tetragonal double prime (t″) structures, depending on cerium content. Raman investigations revealed a unique distortion band in all compositions containing the t′ phase. Our high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) analysis implies that this feature results from oxygen ion displacement in the t′ structure. Luminescence spectroscopy of the europium environment revealed distinct excitation and emission spectra across the various crystal phases, enabling unambiguous identification of all metastable phases. These findings highlight the complex polymorphism of the ZrO<sub>2</sub>–CeO<sub>2</sub> system. The ability to precisely control phase composition offers significant potential for optimizing properties for diverse applications, including oxygen sensors, three-way catalysts, and solid oxide fuel cells for clean, sustainable energy generation.</p><p >This study explores phase transformations in cerium-doped zirconia (ZrO<sub>2</sub>–CeO<sub>2</sub>) solid solutions. Synchrotron X-ray diffraction, Raman, and luminescence spectroscopy reveal tetragonal metastable phases and a miscibility gap between 20–50 mol % Ce. Raman and HERFD-XANES confirm that Ce remains tetravalent, with structural distortions arising from oxygen displacement rather than Ce<sup>3+</sup> formation. These findings enhance our understanding of phase behavior, aiding the development of materials with improved oxygen storage and catalytic performance.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 19","pages":"9670–9683 9670–9683"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.inorgchem.5c00865","citationCount":"0","resultStr":"{\"title\":\"Exploring Metastable Phases in Cerium-Doped Zirconia: Insights from X-ray Diffraction, Raman, X-ray Absorption, and Luminescence Spectroscopy\",\"authors\":\"Luiza B. F. dos Santos,&nbsp;Volodymyr Svitlyk,&nbsp;Selina Richter,&nbsp;Christoph Hennig,&nbsp;Katharina Müller,&nbsp;Elena F. Bazarkina,&nbsp;Kristina O. Kvashnina,&nbsp;Thorsten Stumpf and Nina Huittinen*,&nbsp;\",\"doi\":\"10.1021/acs.inorgchem.5c0086510.1021/acs.inorgchem.5c00865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The ZrO<sub>2</sub>–CeO<sub>2</sub> system is fundamental to various technological applications, yet unresolved questions persist regarding cation miscibility and the occurrence of metastable phases in the Zr<sub>1–<i>x</i></sub>Ce<sub><i>x</i></sub>O<sub>2</sub> phase diagram. This work addresses these gaps through a comprehensive investigation of Zr<sub>1–<i>x</i></sub>Ce<sub><i>x</i></sub>O<sub>2</sub> compositions with varying cerium concentrations and incorporating Eu<sup>3+</sup> as a luminescent probe. Synchrotron powder X-ray diffraction analysis unveiled a miscibility gap between 20 and 50 mol % cerium. Beyond this gap, the formation of solid solutions and multiple crystalline phases was observed, including tetragonal prime (t′) and tetragonal double prime (t″) structures, depending on cerium content. Raman investigations revealed a unique distortion band in all compositions containing the t′ phase. Our high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) analysis implies that this feature results from oxygen ion displacement in the t′ structure. Luminescence spectroscopy of the europium environment revealed distinct excitation and emission spectra across the various crystal phases, enabling unambiguous identification of all metastable phases. These findings highlight the complex polymorphism of the ZrO<sub>2</sub>–CeO<sub>2</sub> system. The ability to precisely control phase composition offers significant potential for optimizing properties for diverse applications, including oxygen sensors, three-way catalysts, and solid oxide fuel cells for clean, sustainable energy generation.</p><p >This study explores phase transformations in cerium-doped zirconia (ZrO<sub>2</sub>–CeO<sub>2</sub>) solid solutions. Synchrotron X-ray diffraction, Raman, and luminescence spectroscopy reveal tetragonal metastable phases and a miscibility gap between 20–50 mol % Ce. Raman and HERFD-XANES confirm that Ce remains tetravalent, with structural distortions arising from oxygen displacement rather than Ce<sup>3+</sup> formation. These findings enhance our understanding of phase behavior, aiding the development of materials with improved oxygen storage and catalytic performance.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"64 19\",\"pages\":\"9670–9683 9670–9683\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.inorgchem.5c00865\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c00865\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c00865","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

ZrO2-CeO2体系是各种技术应用的基础,但在Zr1-xCexO2相图中,关于阳离子混溶和亚稳相的出现仍然存在未解决的问题。这项工作通过全面研究具有不同铈浓度的Zr1-xCexO2成分并将Eu3+作为发光探针来解决这些空白。同步加速器粉末x射线衍射分析揭示了20和50 mol %的铈之间的混相间隙。在此间隙之外,还观察到固溶体和多晶相的形成,包括四方素数(t ')和四方双素数(t″)结构,具体取决于铈含量。拉曼研究发现,在所有含有t′相的成分中都有一个独特的畸变带。我们的高能分辨率荧光检测x射线吸收近边结构光谱(HERFD-XANES)分析表明,这一特征是由t '结构中的氧离子位移引起的。铕环境的发光光谱揭示了不同晶体相的不同激发和发射光谱,从而能够明确地识别所有亚稳相。这些发现突出了ZrO2-CeO2体系的复杂多态性。精确控制相组成的能力为优化各种应用的性能提供了巨大的潜力,包括氧传感器、三元催化剂和用于清洁、可持续能源生产的固体氧化物燃料电池。本研究探讨了铈掺杂氧化锆(ZrO2-CeO2)固溶体的相变。同步加速器x射线衍射,拉曼和发光光谱显示四方亚稳相和20-50 mol % Ce之间的混溶间隙。Raman和HERFD-XANES证实Ce仍然是四价的,其结构扭曲是由氧置换而不是Ce3+形成引起的。这些发现增强了我们对相行为的理解,有助于开发具有改进氧储存和催化性能的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Metastable Phases in Cerium-Doped Zirconia: Insights from X-ray Diffraction, Raman, X-ray Absorption, and Luminescence Spectroscopy

The ZrO2–CeO2 system is fundamental to various technological applications, yet unresolved questions persist regarding cation miscibility and the occurrence of metastable phases in the Zr1–xCexO2 phase diagram. This work addresses these gaps through a comprehensive investigation of Zr1–xCexO2 compositions with varying cerium concentrations and incorporating Eu3+ as a luminescent probe. Synchrotron powder X-ray diffraction analysis unveiled a miscibility gap between 20 and 50 mol % cerium. Beyond this gap, the formation of solid solutions and multiple crystalline phases was observed, including tetragonal prime (t′) and tetragonal double prime (t″) structures, depending on cerium content. Raman investigations revealed a unique distortion band in all compositions containing the t′ phase. Our high energy resolution fluorescence detected X-ray absorption near edge structure spectroscopy (HERFD-XANES) analysis implies that this feature results from oxygen ion displacement in the t′ structure. Luminescence spectroscopy of the europium environment revealed distinct excitation and emission spectra across the various crystal phases, enabling unambiguous identification of all metastable phases. These findings highlight the complex polymorphism of the ZrO2–CeO2 system. The ability to precisely control phase composition offers significant potential for optimizing properties for diverse applications, including oxygen sensors, three-way catalysts, and solid oxide fuel cells for clean, sustainable energy generation.

This study explores phase transformations in cerium-doped zirconia (ZrO2–CeO2) solid solutions. Synchrotron X-ray diffraction, Raman, and luminescence spectroscopy reveal tetragonal metastable phases and a miscibility gap between 20–50 mol % Ce. Raman and HERFD-XANES confirm that Ce remains tetravalent, with structural distortions arising from oxygen displacement rather than Ce3+ formation. These findings enhance our understanding of phase behavior, aiding the development of materials with improved oxygen storage and catalytic performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信