两亲性碳点用于超快速和无水洗线粒体靶向成像

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-18 DOI:10.1021/acsnano.5c05934
Feishi Shan, Jing Zhang, Chengshuang Liao, Yanman Liu, Xiangli Li, Haodong Mi, Wei Wang, Shanshan Jiang, Mei Li, Yan-Hong Liu, Zhouyu Wang, Leyong Wang, Jun-Jie Zhu
{"title":"两亲性碳点用于超快速和无水洗线粒体靶向成像","authors":"Feishi Shan, Jing Zhang, Chengshuang Liao, Yanman Liu, Xiangli Li, Haodong Mi, Wei Wang, Shanshan Jiang, Mei Li, Yan-Hong Liu, Zhouyu Wang, Leyong Wang, Jun-Jie Zhu","doi":"10.1021/acsnano.5c05934","DOIUrl":null,"url":null,"abstract":"Carbon dots (CDs) exhibit exceptional biocompatibility and programmable amphiphilicity, establishing them as transformative nanomaterials for subcellular visualization with exceptional resolution. However, existing CD-based probes lack the spatiotemporal precision required for real-time organelle tracking, particularly in mitochondrial-targeted imaging via ultrafast, wash-free protocols. To overcome these limitations, this study describes the solvent-free, high-temperature (280 °C) and short-time (2 h) preparation of green-emitting CDs (GCDs) with distinctive amphiphilic architectures utilizing benzoylurea and citric acid in a sealed high-pressure reactor. GCDs may form micelle-like structures driven to hydrophobic interactions, producing long-wavelength emission in contrast to blue emission in low-polar solvents. They also simultaneously activate the synergy of numerous endocytotic modes, achieving ultrafast (<5 s) and wash-free imaging. GCDs can also effectively target the mitochondria, more significantly, in both normal and cancer cells (Person’s value ≈ 0.90/0.91), which is explained by the minor adjustment of mitochondrial membrane potential. This work describes assembly mechanisms of amphiphilic CDs while establishing potential design principles for mitochondria-targeted nanostructures with wash-free, ultrafast tracking.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"79 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amphiphilic Carbon Dots for Ultrafast and Wash-Free Mitochondria-Targeted Imaging\",\"authors\":\"Feishi Shan, Jing Zhang, Chengshuang Liao, Yanman Liu, Xiangli Li, Haodong Mi, Wei Wang, Shanshan Jiang, Mei Li, Yan-Hong Liu, Zhouyu Wang, Leyong Wang, Jun-Jie Zhu\",\"doi\":\"10.1021/acsnano.5c05934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon dots (CDs) exhibit exceptional biocompatibility and programmable amphiphilicity, establishing them as transformative nanomaterials for subcellular visualization with exceptional resolution. However, existing CD-based probes lack the spatiotemporal precision required for real-time organelle tracking, particularly in mitochondrial-targeted imaging via ultrafast, wash-free protocols. To overcome these limitations, this study describes the solvent-free, high-temperature (280 °C) and short-time (2 h) preparation of green-emitting CDs (GCDs) with distinctive amphiphilic architectures utilizing benzoylurea and citric acid in a sealed high-pressure reactor. GCDs may form micelle-like structures driven to hydrophobic interactions, producing long-wavelength emission in contrast to blue emission in low-polar solvents. They also simultaneously activate the synergy of numerous endocytotic modes, achieving ultrafast (<5 s) and wash-free imaging. GCDs can also effectively target the mitochondria, more significantly, in both normal and cancer cells (Person’s value ≈ 0.90/0.91), which is explained by the minor adjustment of mitochondrial membrane potential. This work describes assembly mechanisms of amphiphilic CDs while establishing potential design principles for mitochondria-targeted nanostructures with wash-free, ultrafast tracking.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c05934\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05934","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳点(cd)表现出优异的生物相容性和可编程的两亲性,使它们成为具有优异分辨率的亚细胞可视化变革性纳米材料。然而,现有的基于cd的探针缺乏实时细胞器跟踪所需的时空精度,特别是在通过超快,无清洗协议进行线粒体靶向成像时。为了克服这些限制,本研究描述了在密封高压反应器中利用苯甲酰脲和柠檬酸制备具有独特两亲性结构的绿色发光CDs (GCDs)的无溶剂,高温(280°C)和短时间(2 h)。gcd可以形成胶束状结构,驱动疏水相互作用,与低极性溶剂中的蓝色发射相比,产生长波发射。它们还可以同时激活多种内吞模式的协同作用,实现超快(5秒)和免水洗成像。GCDs也能有效靶向线粒体,在正常细胞和癌细胞中更为显著(Person’s值≈0.90/0.91),这可以解释为线粒体膜电位的微小调节。这项工作描述了两亲性CDs的组装机制,同时建立了线粒体靶向纳米结构的潜在设计原则,具有免洗,超快速跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Amphiphilic Carbon Dots for Ultrafast and Wash-Free Mitochondria-Targeted Imaging

Amphiphilic Carbon Dots for Ultrafast and Wash-Free Mitochondria-Targeted Imaging
Carbon dots (CDs) exhibit exceptional biocompatibility and programmable amphiphilicity, establishing them as transformative nanomaterials for subcellular visualization with exceptional resolution. However, existing CD-based probes lack the spatiotemporal precision required for real-time organelle tracking, particularly in mitochondrial-targeted imaging via ultrafast, wash-free protocols. To overcome these limitations, this study describes the solvent-free, high-temperature (280 °C) and short-time (2 h) preparation of green-emitting CDs (GCDs) with distinctive amphiphilic architectures utilizing benzoylurea and citric acid in a sealed high-pressure reactor. GCDs may form micelle-like structures driven to hydrophobic interactions, producing long-wavelength emission in contrast to blue emission in low-polar solvents. They also simultaneously activate the synergy of numerous endocytotic modes, achieving ultrafast (<5 s) and wash-free imaging. GCDs can also effectively target the mitochondria, more significantly, in both normal and cancer cells (Person’s value ≈ 0.90/0.91), which is explained by the minor adjustment of mitochondrial membrane potential. This work describes assembly mechanisms of amphiphilic CDs while establishing potential design principles for mitochondria-targeted nanostructures with wash-free, ultrafast tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信