{"title":"一种具有界面调制能力的丙烯酸酯基离子导电网络粘结剂,用于锂离子电池中高性能Si/C复合阳极","authors":"Renjie Zhou, Ziyang Gong, Xuefeng Gui, Jiwen Hu","doi":"10.1016/j.apsusc.2025.163567","DOIUrl":null,"url":null,"abstract":"Silicon-graphite composites (Si/C) are one of the most promising commercial anode materials due to the higher specific capacity than graphite and lower swelling effect than silicon, but their volume expansion and capacity degradation due to complex interfacial structure remain challenges. Here, the binder with interfacial modulation capability and high lithium-ion conductivity was prepared by acrylate emulsion polymerization and in-situ thermal esterification cross-linking, which can improve the affinity between the binder and Si/C particles through supramolecular interactions of hydrogen bonding and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C0;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 573.5 600.2\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">π</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">π</mi></math></script></span>- <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">&#x3C0;</mi></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.394ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -498.8 573.5 600.2\" width=\"1.332ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3C0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi is=\"true\">π</mi></math></span></span><script type=\"math/mml\"><math><mi is=\"true\">π</mi></math></script></span> conjugate. In addition, functional cyano groups and long ether-bonded chain segments in the binder contribute to efficient SEI construction and Li-ion transport, respectively. With this binder, the Si/C anode maintains a reversible specific capacity of 560.1 mAh/g after 400 cycles at a current density of 1C with the capacity retention rate of 87.3 %, and stable cycling (472.0 mAh/g after 180 cycles) even when the loading of Si/C are doubled. Furthermore, the reversible specific capacity of the anode was stabilized at 349.9 mAh/g at the high current density of 4C.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"97 1","pages":"163567"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Acrylate-Based Ion-Conductive network binder with interfacial modulation capability for High-Performance Si/C composite anodes in lithium-ion batteries\",\"authors\":\"Renjie Zhou, Ziyang Gong, Xuefeng Gui, Jiwen Hu\",\"doi\":\"10.1016/j.apsusc.2025.163567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon-graphite composites (Si/C) are one of the most promising commercial anode materials due to the higher specific capacity than graphite and lower swelling effect than silicon, but their volume expansion and capacity degradation due to complex interfacial structure remain challenges. Here, the binder with interfacial modulation capability and high lithium-ion conductivity was prepared by acrylate emulsion polymerization and in-situ thermal esterification cross-linking, which can improve the affinity between the binder and Si/C particles through supramolecular interactions of hydrogen bonding and <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">&#x3C0;</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.394ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -498.8 573.5 600.2\\\" width=\\\"1.332ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3C0\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">π</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">π</mi></math></script></span>- <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">&#x3C0;</mi></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.394ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.235ex;\\\" viewbox=\\\"0 -498.8 573.5 600.2\\\" width=\\\"1.332ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-3C0\\\"></use></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi is=\\\"true\\\">π</mi></math></span></span><script type=\\\"math/mml\\\"><math><mi is=\\\"true\\\">π</mi></math></script></span> conjugate. In addition, functional cyano groups and long ether-bonded chain segments in the binder contribute to efficient SEI construction and Li-ion transport, respectively. With this binder, the Si/C anode maintains a reversible specific capacity of 560.1 mAh/g after 400 cycles at a current density of 1C with the capacity retention rate of 87.3 %, and stable cycling (472.0 mAh/g after 180 cycles) even when the loading of Si/C are doubled. Furthermore, the reversible specific capacity of the anode was stabilized at 349.9 mAh/g at the high current density of 4C.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"97 1\",\"pages\":\"163567\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2025.163567\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163567","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
An Acrylate-Based Ion-Conductive network binder with interfacial modulation capability for High-Performance Si/C composite anodes in lithium-ion batteries
Silicon-graphite composites (Si/C) are one of the most promising commercial anode materials due to the higher specific capacity than graphite and lower swelling effect than silicon, but their volume expansion and capacity degradation due to complex interfacial structure remain challenges. Here, the binder with interfacial modulation capability and high lithium-ion conductivity was prepared by acrylate emulsion polymerization and in-situ thermal esterification cross-linking, which can improve the affinity between the binder and Si/C particles through supramolecular interactions of hydrogen bonding and - conjugate. In addition, functional cyano groups and long ether-bonded chain segments in the binder contribute to efficient SEI construction and Li-ion transport, respectively. With this binder, the Si/C anode maintains a reversible specific capacity of 560.1 mAh/g after 400 cycles at a current density of 1C with the capacity retention rate of 87.3 %, and stable cycling (472.0 mAh/g after 180 cycles) even when the loading of Si/C are doubled. Furthermore, the reversible specific capacity of the anode was stabilized at 349.9 mAh/g at the high current density of 4C.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.