探讨稀土元素(镨、钐、镧和铽)和氧化应激在多囊卵巢综合征中的作用:一项病例对照研究。

Human & experimental toxicology Pub Date : 2025-01-01 Epub Date: 2025-05-16 DOI:10.1177/09603271251342280
Manal Abudawood
{"title":"探讨稀土元素(镨、钐、镧和铽)和氧化应激在多囊卵巢综合征中的作用:一项病例对照研究。","authors":"Manal Abudawood","doi":"10.1177/09603271251342280","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundPraseodymium (Pr), Samarium (Sm), Lanthanum (La), and Terbium (Tb) are rare earth elements (REEs) that can accumulate in the body and induce oxidative stress (OS), which may contribute to polycystic ovary syndrome (PCOS), a condition affecting 116 million women worldwide. With the increasing use of REEs, understanding their role in PCOS is crucial.DesignThis case-control study included 56 PCOS cases and 50 healthy controls, with confounding factors such as age, BMI, and hormones controlled. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure serum levels of Pr, Sm, La, and Tb, and Pearson correlation was performed to explore their relationship with oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD).ResultA significant increase in serum levels of Pr, Sm, La, and Tb was observed in PCOS cases compared to controls (<i>p</i> < 0.05). The 95% confidence intervals (CIs) for the differences in serum Pr, Sm, La, and Tb levels were [0.0008, 0.0032], [0.0002, 0.0091], [0.0019, 0.0073], and [0.0002, 0.0129], respectively. Additionally, serum levels of MDA were significantly elevated, accompanied by reduction in the antioxidant markers-GSH and SOD (<i>p</i> < 0.001). Elevated REE levels were positively correlated with increased MDA and negatively correlated with GSH and SOD, indicating increased oxidative stress.ConclusionThese findings suggest that oxidative stress-induced metal intoxication may play a critical role in the development of PCOS. Future studies should explore the clinical significance of REE exposure and its potential as a target for preventive strategies in PCOS management.</p>","PeriodicalId":94029,"journal":{"name":"Human & experimental toxicology","volume":"44 ","pages":"9603271251342280"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of rare earth elements (praseodymium, samarium, lanthanum, and terbium) and oxidative stress in polycystic ovary syndrome: A case-control study.\",\"authors\":\"Manal Abudawood\",\"doi\":\"10.1177/09603271251342280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundPraseodymium (Pr), Samarium (Sm), Lanthanum (La), and Terbium (Tb) are rare earth elements (REEs) that can accumulate in the body and induce oxidative stress (OS), which may contribute to polycystic ovary syndrome (PCOS), a condition affecting 116 million women worldwide. With the increasing use of REEs, understanding their role in PCOS is crucial.DesignThis case-control study included 56 PCOS cases and 50 healthy controls, with confounding factors such as age, BMI, and hormones controlled. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure serum levels of Pr, Sm, La, and Tb, and Pearson correlation was performed to explore their relationship with oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD).ResultA significant increase in serum levels of Pr, Sm, La, and Tb was observed in PCOS cases compared to controls (<i>p</i> < 0.05). The 95% confidence intervals (CIs) for the differences in serum Pr, Sm, La, and Tb levels were [0.0008, 0.0032], [0.0002, 0.0091], [0.0019, 0.0073], and [0.0002, 0.0129], respectively. Additionally, serum levels of MDA were significantly elevated, accompanied by reduction in the antioxidant markers-GSH and SOD (<i>p</i> < 0.001). Elevated REE levels were positively correlated with increased MDA and negatively correlated with GSH and SOD, indicating increased oxidative stress.ConclusionThese findings suggest that oxidative stress-induced metal intoxication may play a critical role in the development of PCOS. Future studies should explore the clinical significance of REE exposure and its potential as a target for preventive strategies in PCOS management.</p>\",\"PeriodicalId\":94029,\"journal\":{\"name\":\"Human & experimental toxicology\",\"volume\":\"44 \",\"pages\":\"9603271251342280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human & experimental toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09603271251342280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & experimental toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09603271251342280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/16 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

镨(Pr)、钐(Sm)、镧(La)和铽(Tb)是稀土元素(ree),它们可以在体内积累并诱导氧化应激(OS),这可能导致多囊卵巢综合征(PCOS),全球有1.16亿女性患有此病。随着稀土元素的使用越来越多,了解它们在PCOS中的作用至关重要。本研究纳入56例PCOS患者和50例健康对照者,控制年龄、BMI和激素等混杂因素。采用电感耦合血浆质谱法(ICP-MS)测定血清Pr、Sm、La和Tb水平,并进行Pearson相关性分析,探讨其与丙二醛(MDA)、谷胱甘肽(GSH)、超氧化物歧化酶(SOD)等氧化应激标志物的关系。结果PCOS患者血清Pr、Sm、La、Tb水平显著高于对照组(p < 0.05)。血清Pr、Sm、La和Tb水平差异的95%置信区间(ci)分别为[0.0008,0.0032]、[0.0002,0.0091]、[0.0019,0.0073]和[0.0002,0.0129]。此外,血清MDA水平显著升高,并伴有抗氧化标志物gsh和SOD的降低(p < 0.001)。REE水平升高与MDA升高呈正相关,与GSH、SOD升高负相关,提示氧化应激增加。结论氧化应激诱导的金属中毒可能在PCOS发病过程中起重要作用。未来的研究应探讨稀土元素暴露的临床意义及其作为PCOS治疗预防策略的潜在目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the role of rare earth elements (praseodymium, samarium, lanthanum, and terbium) and oxidative stress in polycystic ovary syndrome: A case-control study.

BackgroundPraseodymium (Pr), Samarium (Sm), Lanthanum (La), and Terbium (Tb) are rare earth elements (REEs) that can accumulate in the body and induce oxidative stress (OS), which may contribute to polycystic ovary syndrome (PCOS), a condition affecting 116 million women worldwide. With the increasing use of REEs, understanding their role in PCOS is crucial.DesignThis case-control study included 56 PCOS cases and 50 healthy controls, with confounding factors such as age, BMI, and hormones controlled. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to measure serum levels of Pr, Sm, La, and Tb, and Pearson correlation was performed to explore their relationship with oxidative stress markers such as malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD).ResultA significant increase in serum levels of Pr, Sm, La, and Tb was observed in PCOS cases compared to controls (p < 0.05). The 95% confidence intervals (CIs) for the differences in serum Pr, Sm, La, and Tb levels were [0.0008, 0.0032], [0.0002, 0.0091], [0.0019, 0.0073], and [0.0002, 0.0129], respectively. Additionally, serum levels of MDA were significantly elevated, accompanied by reduction in the antioxidant markers-GSH and SOD (p < 0.001). Elevated REE levels were positively correlated with increased MDA and negatively correlated with GSH and SOD, indicating increased oxidative stress.ConclusionThese findings suggest that oxidative stress-induced metal intoxication may play a critical role in the development of PCOS. Future studies should explore the clinical significance of REE exposure and its potential as a target for preventive strategies in PCOS management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信