用于疾病预防和治疗的天然产物纳米给药系统。

Shanghui Gao, Jian-Rong Zhou, Kazumi Yokomizo, Jun Fang
{"title":"用于疾病预防和治疗的天然产物纳米给药系统。","authors":"Shanghui Gao, Jian-Rong Zhou, Kazumi Yokomizo, Jun Fang","doi":"10.1080/17425247.2025.2506830","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial.</p><p><strong>Areas covered: </strong>This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations.</p><p><strong>Expert opinion: </strong>Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-drug delivery system of natural products for disease prevention and treatment.\",\"authors\":\"Shanghui Gao, Jian-Rong Zhou, Kazumi Yokomizo, Jun Fang\",\"doi\":\"10.1080/17425247.2025.2506830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial.</p><p><strong>Areas covered: </strong>This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations.</p><p><strong>Expert opinion: </strong>Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2506830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2506830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从植物、动物和微生物中提取的天然产物具有广泛的药理活性,包括抗感染、抗真菌、抗肿瘤、降胆固醇和抗炎作用。然而,它们的临床应用往往受到诸如稳定性低、生物利用度差和半衰期短等挑战的限制。因此,为这些化合物开发有效的药物输送系统至关重要。涵盖领域:本综述强调了天然产物与纳米药物传递系统的整合,重点介绍了利用增强渗透性和保留性(EPR)效应来提高其稳定性、生物利用度和靶向性的最新进展。通过将天然化合物嵌入到聚合物纳米颗粒或类似的纳米平台中,这些配方显著提高了药代动力学和药效学性能,克服了传统的局限性。专家意见:将天然产品与纳米颗粒技术相结合,显示出扩大其治疗应用的巨大潜力。虽然这些创新改善了天然化合物的药理学特征,但继续研究是优化临床使用的必要条件。纳米颗粒设计和递送策略的进步将是最大限度地发挥天然产物治疗潜力、解决现有挑战和增强其疾病治疗功效的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nano-drug delivery system of natural products for disease prevention and treatment.

Introduction: Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial.

Areas covered: This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations.

Expert opinion: Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信