Shanghui Gao, Jian-Rong Zhou, Kazumi Yokomizo, Jun Fang
{"title":"用于疾病预防和治疗的天然产物纳米给药系统。","authors":"Shanghui Gao, Jian-Rong Zhou, Kazumi Yokomizo, Jun Fang","doi":"10.1080/17425247.2025.2506830","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial.</p><p><strong>Areas covered: </strong>This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations.</p><p><strong>Expert opinion: </strong>Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.</p>","PeriodicalId":94004,"journal":{"name":"Expert opinion on drug delivery","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-drug delivery system of natural products for disease prevention and treatment.\",\"authors\":\"Shanghui Gao, Jian-Rong Zhou, Kazumi Yokomizo, Jun Fang\",\"doi\":\"10.1080/17425247.2025.2506830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial.</p><p><strong>Areas covered: </strong>This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations.</p><p><strong>Expert opinion: </strong>Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.</p>\",\"PeriodicalId\":94004,\"journal\":{\"name\":\"Expert opinion on drug delivery\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on drug delivery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17425247.2025.2506830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on drug delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17425247.2025.2506830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nano-drug delivery system of natural products for disease prevention and treatment.
Introduction: Natural products, derived from plants, animals, and microorganisms, offer a wide range of pharmacological activities, including anti-infective, antifungal, anti-tumor, cholesterol-lowering, and anti-inflammatory effects. However, their clinical use is often limited by challenges such as low stability, poor bioavailability, and short half-lives. Thus, developing effective drug delivery systems for these compounds is crucial.
Areas covered: This review highlights the integration of natural products with nano-drug delivery systems, focusing on recent advancements that utilize the enhanced permeability and retention (EPR) effect to improve their stability, bioavailability, and targeting. By embedding natural compounds into polymeric nanoparticles or similar nanoplatforms, these formulations significantly enhance pharmacokinetic and pharmacodynamic properties, overcoming traditional limitations.
Expert opinion: Combining natural products with nanoparticle technology shows great potential to expand their therapeutic applications. Although these innovations improve the pharmacological profiles of natural compounds, continued research is essential to optimize clinical use. Advances in nanoparticle design and delivery strategies will be key to maximizing the therapeutic potential of natural products, addressing existing challenges, and enhancing their efficacy in disease treatment.