混合网络攻击下的网络物理系统:弹性事件触发的H∞控制方法。

Sepideh Jahani VakilKandi, Farhad Bayat, Abolfazl Jalilvand, Andrzej Bartoszewicz
{"title":"混合网络攻击下的网络物理系统:弹性事件触发的H∞控制方法。","authors":"Sepideh Jahani VakilKandi, Farhad Bayat, Abolfazl Jalilvand, Andrzej Bartoszewicz","doi":"10.1016/j.isatra.2025.05.011","DOIUrl":null,"url":null,"abstract":"<p><p>This article introduces a novel adaptive event-triggered finite-time H<sub>∞</sub> control approach for Cyber-Physical Systems (CPSs) under the influence of bounded disturbances, actuator faults, and randomly occurring hybrid cyber-attacks, including aperiodic DoS attacks, deception attacks, and replay attacks. This paper presents a novel integrated framework for hybrid attacks that consists of aperiodic DoS attacks, deception attacks, and replay attacks. To minimize continuous data transmissions in the network and maximize the utilization of limited resources, an adaptive periodic event-triggered mechanism (APETM) is developed by employing the DoS-dependent adaptive varying threshold. Compared to common event-triggered mechanisms, this method allows for periodic monitoring and effectively increases the lower bound of event intervals, making it well-suited for real-world applications. Initially, a new theoretical framework for cyber-physical systems is proposed, incorporating an adaptive periodic event-triggered mechanism under hybrid cyber-attacks, external disturbances, and actuator faults. Based on the established model, the Lyapunov-Krasovskii stability theory is employed to establish sufficient conditions for ensuring the finite-time stability with an H<sub>∞</sub> performance level. Additionally, a linear matrix inequality technique is utilized to determine the controller gains and triggering parameters. The effectiveness of the proposed method is demonstrated through a simulation of the one-link flexible joint robot systems.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyber-physical systems under hybrid cyber-attacks: Resilient event-triggered H<sub>∞</sub> control approach.\",\"authors\":\"Sepideh Jahani VakilKandi, Farhad Bayat, Abolfazl Jalilvand, Andrzej Bartoszewicz\",\"doi\":\"10.1016/j.isatra.2025.05.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article introduces a novel adaptive event-triggered finite-time H<sub>∞</sub> control approach for Cyber-Physical Systems (CPSs) under the influence of bounded disturbances, actuator faults, and randomly occurring hybrid cyber-attacks, including aperiodic DoS attacks, deception attacks, and replay attacks. This paper presents a novel integrated framework for hybrid attacks that consists of aperiodic DoS attacks, deception attacks, and replay attacks. To minimize continuous data transmissions in the network and maximize the utilization of limited resources, an adaptive periodic event-triggered mechanism (APETM) is developed by employing the DoS-dependent adaptive varying threshold. Compared to common event-triggered mechanisms, this method allows for periodic monitoring and effectively increases the lower bound of event intervals, making it well-suited for real-world applications. Initially, a new theoretical framework for cyber-physical systems is proposed, incorporating an adaptive periodic event-triggered mechanism under hybrid cyber-attacks, external disturbances, and actuator faults. Based on the established model, the Lyapunov-Krasovskii stability theory is employed to establish sufficient conditions for ensuring the finite-time stability with an H<sub>∞</sub> performance level. Additionally, a linear matrix inequality technique is utilized to determine the controller gains and triggering parameters. The effectiveness of the proposed method is demonstrated through a simulation of the one-link flexible joint robot systems.</p>\",\"PeriodicalId\":94059,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isatra.2025.05.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.05.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的自适应事件触发的有限时间H∞控制方法,用于网络物理系统(cps)在有界干扰、执行器故障和随机发生的混合网络攻击(包括非周期性DoS攻击、欺骗攻击和重放攻击)的影响下。本文提出了一种新的混合攻击集成框架,该框架由非周期性DoS攻击、欺骗攻击和重放攻击组成。为了最大限度地减少网络中的连续数据传输,最大限度地利用有限的资源,采用dos相关的自适应变化阈值,提出了一种自适应周期事件触发机制(APETM)。与常见的事件触发机制相比,这种方法允许定期监视,并有效地增加了事件间隔的下限,使其非常适合实际应用程序。首先,提出了一种新的网络物理系统理论框架,其中包含了混合网络攻击、外部干扰和执行器故障下的自适应周期性事件触发机制。在建立模型的基础上,利用Lyapunov-Krasovskii稳定性理论,建立了保证具有H∞性能水平的有限时间稳定性的充分条件。此外,利用线性矩阵不等式技术确定控制器增益和触发参数。通过对单连杆柔性关节机器人系统的仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cyber-physical systems under hybrid cyber-attacks: Resilient event-triggered H control approach.

This article introduces a novel adaptive event-triggered finite-time H control approach for Cyber-Physical Systems (CPSs) under the influence of bounded disturbances, actuator faults, and randomly occurring hybrid cyber-attacks, including aperiodic DoS attacks, deception attacks, and replay attacks. This paper presents a novel integrated framework for hybrid attacks that consists of aperiodic DoS attacks, deception attacks, and replay attacks. To minimize continuous data transmissions in the network and maximize the utilization of limited resources, an adaptive periodic event-triggered mechanism (APETM) is developed by employing the DoS-dependent adaptive varying threshold. Compared to common event-triggered mechanisms, this method allows for periodic monitoring and effectively increases the lower bound of event intervals, making it well-suited for real-world applications. Initially, a new theoretical framework for cyber-physical systems is proposed, incorporating an adaptive periodic event-triggered mechanism under hybrid cyber-attacks, external disturbances, and actuator faults. Based on the established model, the Lyapunov-Krasovskii stability theory is employed to establish sufficient conditions for ensuring the finite-time stability with an H performance level. Additionally, a linear matrix inequality technique is utilized to determine the controller gains and triggering parameters. The effectiveness of the proposed method is demonstrated through a simulation of the one-link flexible joint robot systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信