通过机器学习的固有结构描述符。

Emanuele Telari, Antonio Tinti, Manoj Settem, Carlo Guardiani, Lakshmi Kumar Kunche, Morgan Rees, Henry Hoddinott, Malcolm Dearg, Bernd von Issendorff, Georg Held, Thomas Slater, Richard E Palmer, Luca Maragliano, Riccardo Ferrando, Alberto Giacomello
{"title":"通过机器学习的固有结构描述符。","authors":"Emanuele Telari, Antonio Tinti, Manoj Settem, Carlo Guardiani, Lakshmi Kumar Kunche, Morgan Rees, Henry Hoddinott, Malcolm Dearg, Bernd von Issendorff, Georg Held, Thomas Slater, Richard E Palmer, Luca Maragliano, Riccardo Ferrando, Alberto Giacomello","doi":"10.1088/1361-6633/add95b","DOIUrl":null,"url":null,"abstract":"<p><p>Finding proper collective variables for complex systems and processes is one of the most challenging tasks in simulations, which limits the interpretation of experimental and simulated data and the application of enhanced sampling techniques. &#xD;Here, we propose a machine learning approach able to distill few, physically relevant variables by associating instantaneous configurations of the system to their corresponding inherent structures as defined in liquids theory.&#xD;We apply this approach to the challenging case of structural transitions in nanoclusters, managing to characterize and explore the structural complexity of an experimentally relevant system constituted by 147 gold atoms. Our inherent-structure variables are shown to be effective at computing complex free-energy landscapes, transition rates, and at describing non-equilibrium melting and freezing processes. In addition, we illustrate the generality of this machine learning strategy by deploying it to understand conformational rearrangements of the bradykinin peptide, indicating its applicability to a vast range of systems, including liquids, glasses, and proteins.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inherent structural descriptors via machine learning.\",\"authors\":\"Emanuele Telari, Antonio Tinti, Manoj Settem, Carlo Guardiani, Lakshmi Kumar Kunche, Morgan Rees, Henry Hoddinott, Malcolm Dearg, Bernd von Issendorff, Georg Held, Thomas Slater, Richard E Palmer, Luca Maragliano, Riccardo Ferrando, Alberto Giacomello\",\"doi\":\"10.1088/1361-6633/add95b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finding proper collective variables for complex systems and processes is one of the most challenging tasks in simulations, which limits the interpretation of experimental and simulated data and the application of enhanced sampling techniques. &#xD;Here, we propose a machine learning approach able to distill few, physically relevant variables by associating instantaneous configurations of the system to their corresponding inherent structures as defined in liquids theory.&#xD;We apply this approach to the challenging case of structural transitions in nanoclusters, managing to characterize and explore the structural complexity of an experimentally relevant system constituted by 147 gold atoms. Our inherent-structure variables are shown to be effective at computing complex free-energy landscapes, transition rates, and at describing non-equilibrium melting and freezing processes. In addition, we illustrate the generality of this machine learning strategy by deploying it to understand conformational rearrangements of the bradykinin peptide, indicating its applicability to a vast range of systems, including liquids, glasses, and proteins.</p>\",\"PeriodicalId\":74666,\"journal\":{\"name\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reports on progress in physics. Physical Society (Great Britain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6633/add95b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on progress in physics. Physical Society (Great Britain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6633/add95b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为复杂系统和过程寻找合适的集体变量是模拟中最具挑战性的任务之一,这限制了实验和模拟数据的解释以及增强采样技术的应用。在这里,我们提出了一种机器学习方法,能够通过将系统的瞬时配置与液体理论中定义的相应固有结构相关联来提取少量物理相关变量。 ;我们将这种方法应用于纳米团簇结构转变的挑战性案例,设法表征和探索由147个金原子组成的实验相关系统的结构复杂性。我们的固有结构变量被证明是有效的计算复杂的自由能景观,转换速率,并在描述非平衡融化和冻结过程。此外,我们通过部署这种机器学习策略来理解缓激肽的构象重排,说明了这种机器学习策略的通用性,表明它适用于广泛的系统,包括液体、玻璃和蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inherent structural descriptors via machine learning.

Finding proper collective variables for complex systems and processes is one of the most challenging tasks in simulations, which limits the interpretation of experimental and simulated data and the application of enhanced sampling techniques. Here, we propose a machine learning approach able to distill few, physically relevant variables by associating instantaneous configurations of the system to their corresponding inherent structures as defined in liquids theory. We apply this approach to the challenging case of structural transitions in nanoclusters, managing to characterize and explore the structural complexity of an experimentally relevant system constituted by 147 gold atoms. Our inherent-structure variables are shown to be effective at computing complex free-energy landscapes, transition rates, and at describing non-equilibrium melting and freezing processes. In addition, we illustrate the generality of this machine learning strategy by deploying it to understand conformational rearrangements of the bradykinin peptide, indicating its applicability to a vast range of systems, including liquids, glasses, and proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信