认识一下作者:海京任。

IF 11.1 Q1 CELL BIOLOGY
Hae Kyung Im
{"title":"认识一下作者:海京任。","authors":"Hae Kyung Im","doi":"10.1016/j.xgen.2025.100880","DOIUrl":null,"url":null,"abstract":"<p><p>Hae Kyung Im's research group focuses on quantitative computational and statistical methods to tackle genomic data analysis and provides methods to translate the vast amount of genomic data for health research. In collaboration with Mengjie Chen's group, also based at the University of Chicago, Im et al. have published their article \"scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework\" in Cell Genomics. This is a powerful deep learning approach to improve transcriptome-wide association study analysis, and researchers can apply this method to better understand complex disease genomics.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"5 5","pages":"100880"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meet the author: Hae Kyung Im.\",\"authors\":\"Hae Kyung Im\",\"doi\":\"10.1016/j.xgen.2025.100880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hae Kyung Im's research group focuses on quantitative computational and statistical methods to tackle genomic data analysis and provides methods to translate the vast amount of genomic data for health research. In collaboration with Mengjie Chen's group, also based at the University of Chicago, Im et al. have published their article \\\"scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework\\\" in Cell Genomics. This is a powerful deep learning approach to improve transcriptome-wide association study analysis, and researchers can apply this method to better understand complex disease genomics.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\"5 5\",\"pages\":\"100880\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Hae Kyung Im的研究小组专注于解决基因组数据分析的定量计算和统计方法,并提供了将大量基因组数据转化为健康研究的方法。Im等人与同样来自芝加哥大学的陈孟杰团队合作,在《细胞基因组学》杂志上发表了他们的文章《scPrediXcan将深度学习方法和单细胞数据集成到细胞类型特异性转录组关联研究框架》。这是一种强大的深度学习方法,可以改善全转录组关联研究分析,研究人员可以应用这种方法更好地理解复杂的疾病基因组学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meet the author: Hae Kyung Im.

Hae Kyung Im's research group focuses on quantitative computational and statistical methods to tackle genomic data analysis and provides methods to translate the vast amount of genomic data for health research. In collaboration with Mengjie Chen's group, also based at the University of Chicago, Im et al. have published their article "scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework" in Cell Genomics. This is a powerful deep learning approach to improve transcriptome-wide association study analysis, and researchers can apply this method to better understand complex disease genomics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信