scPrediXcan将深度学习方法和单细胞数据集成到细胞类型特异性转录组关联研究框架中。

IF 11.1 Q1 CELL BIOLOGY
Yichao Zhou, Temidayo Adeluwa, Lisha Zhu, Sofia Salazar-Magaña, Sarah Sumner, Hyunki Kim, Saideep Gona, Festus Nyasimi, Rohit Kulkarni, Joseph E Powell, Ravi Madduri, Boxiang Liu, Mengjie Chen, Hae Kyung Im
{"title":"scPrediXcan将深度学习方法和单细胞数据集成到细胞类型特异性转录组关联研究框架中。","authors":"Yichao Zhou, Temidayo Adeluwa, Lisha Zhu, Sofia Salazar-Magaña, Sarah Sumner, Hyunki Kim, Saideep Gona, Festus Nyasimi, Rohit Kulkarni, Joseph E Powell, Ravi Madduri, Boxiang Liu, Mengjie Chen, Hae Kyung Im","doi":"10.1016/j.xgen.2025.100875","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we propose scPrediXcan, which integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts cell-type-specific expression with high accuracy and captures complex gene-regulatory grammar that linear models overlook. Applied to type 2 diabetes (T2D) and systemic lupus erythematosus (SLE), scPrediXcan outperformed the canonical TWAS framework by identifying more candidate causal genes, explaining more genome-wide association study (GWAS) loci and providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that scPrediXcan represents a significant advance, promising to deepen our understanding of the cellular mechanisms underlying complex diseases.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":"5 5","pages":"100875"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143334/pdf/","citationCount":"0","resultStr":"{\"title\":\"scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework.\",\"authors\":\"Yichao Zhou, Temidayo Adeluwa, Lisha Zhu, Sofia Salazar-Magaña, Sarah Sumner, Hyunki Kim, Saideep Gona, Festus Nyasimi, Rohit Kulkarni, Joseph E Powell, Ravi Madduri, Boxiang Liu, Mengjie Chen, Hae Kyung Im\",\"doi\":\"10.1016/j.xgen.2025.100875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we propose scPrediXcan, which integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts cell-type-specific expression with high accuracy and captures complex gene-regulatory grammar that linear models overlook. Applied to type 2 diabetes (T2D) and systemic lupus erythematosus (SLE), scPrediXcan outperformed the canonical TWAS framework by identifying more candidate causal genes, explaining more genome-wide association study (GWAS) loci and providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that scPrediXcan represents a significant advance, promising to deepen our understanding of the cellular mechanisms underlying complex diseases.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\"5 5\",\"pages\":\"100875\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12143334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全转录组关联研究(TWASs)有助于识别致病基因,但由于样本大小有限和细胞类型特异性表达数据的稀疏性,往往无法在细胞水平上确定疾病机制。在这里,我们提出了scPrediXcan,它集成了最先进的深度学习方法,可以预测DNA序列的表观遗传特征和规范的TWAS框架。我们的预测方法ctPred以高精度预测细胞类型特异性表达,并捕获线性模型忽略的复杂基因调控语法。应用于2型糖尿病(T2D)和系统性红斑狼疮(SLE), scPrediXcan通过识别更多的候选因果基因,解释更多的全基因组关联研究(GWAS)位点,并提供TWAS命中的细胞特异性的见解,优于规范的TWAS框架。总的来说,我们的结果表明scPrediXcan代表了一个重大的进步,有望加深我们对复杂疾病背后的细胞机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework.

Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we propose scPrediXcan, which integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts cell-type-specific expression with high accuracy and captures complex gene-regulatory grammar that linear models overlook. Applied to type 2 diabetes (T2D) and systemic lupus erythematosus (SLE), scPrediXcan outperformed the canonical TWAS framework by identifying more candidate causal genes, explaining more genome-wide association study (GWAS) loci and providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that scPrediXcan represents a significant advance, promising to deepen our understanding of the cellular mechanisms underlying complex diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信