{"title":"一种估计小样本IRT模型的监督学习方法。","authors":"Dmitry I Belov, Oliver Lüdtke, Esther Ulitzsch","doi":"10.1111/bmsp.12396","DOIUrl":null,"url":null,"abstract":"<p><p>Existing estimators of parameters of item response theory (IRT) models exploit the likelihood function. In small samples, however, the IRT likelihood oftentimes contains little informative value, potentially resulting in biased and/or unstable parameter estimates and large standard errors. To facilitate small-sample IRT estimation, we introduce a novel approach that does not rely on the likelihood. Our estimation approach derives features from response data and then maps the features to item parameters using a neural network (NN). We describe and evaluate our approach for the three-parameter logistic model; however, it is applicable to any model with an item characteristic curve. Three types of NNs are developed, supporting the obtainment of both point estimates and confidence intervals for IRT model parameters. The results of a simulation study demonstrate that these NNs perform better than Bayesian estimation using Markov chain Monte Carlo methods in terms of the quality of the point estimates and confidence intervals while also being much faster. These properties facilitate (1) pretesting items in a real-time testing environment, (2) pretesting more items and (3) pretesting items only in a secured environment to eradicate possible compromise of new items in online testing.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A supervised learning approach to estimating IRT models in small samples.\",\"authors\":\"Dmitry I Belov, Oliver Lüdtke, Esther Ulitzsch\",\"doi\":\"10.1111/bmsp.12396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing estimators of parameters of item response theory (IRT) models exploit the likelihood function. In small samples, however, the IRT likelihood oftentimes contains little informative value, potentially resulting in biased and/or unstable parameter estimates and large standard errors. To facilitate small-sample IRT estimation, we introduce a novel approach that does not rely on the likelihood. Our estimation approach derives features from response data and then maps the features to item parameters using a neural network (NN). We describe and evaluate our approach for the three-parameter logistic model; however, it is applicable to any model with an item characteristic curve. Three types of NNs are developed, supporting the obtainment of both point estimates and confidence intervals for IRT model parameters. The results of a simulation study demonstrate that these NNs perform better than Bayesian estimation using Markov chain Monte Carlo methods in terms of the quality of the point estimates and confidence intervals while also being much faster. These properties facilitate (1) pretesting items in a real-time testing environment, (2) pretesting more items and (3) pretesting items only in a secured environment to eradicate possible compromise of new items in online testing.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12396\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12396","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A supervised learning approach to estimating IRT models in small samples.
Existing estimators of parameters of item response theory (IRT) models exploit the likelihood function. In small samples, however, the IRT likelihood oftentimes contains little informative value, potentially resulting in biased and/or unstable parameter estimates and large standard errors. To facilitate small-sample IRT estimation, we introduce a novel approach that does not rely on the likelihood. Our estimation approach derives features from response data and then maps the features to item parameters using a neural network (NN). We describe and evaluate our approach for the three-parameter logistic model; however, it is applicable to any model with an item characteristic curve. Three types of NNs are developed, supporting the obtainment of both point estimates and confidence intervals for IRT model parameters. The results of a simulation study demonstrate that these NNs perform better than Bayesian estimation using Markov chain Monte Carlo methods in terms of the quality of the point estimates and confidence intervals while also being much faster. These properties facilitate (1) pretesting items in a real-time testing environment, (2) pretesting more items and (3) pretesting items only in a secured environment to eradicate possible compromise of new items in online testing.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.