一种估计小样本IRT模型的监督学习方法。

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Dmitry I Belov, Oliver Lüdtke, Esther Ulitzsch
{"title":"一种估计小样本IRT模型的监督学习方法。","authors":"Dmitry I Belov, Oliver Lüdtke, Esther Ulitzsch","doi":"10.1111/bmsp.12396","DOIUrl":null,"url":null,"abstract":"<p><p>Existing estimators of parameters of item response theory (IRT) models exploit the likelihood function. In small samples, however, the IRT likelihood oftentimes contains little informative value, potentially resulting in biased and/or unstable parameter estimates and large standard errors. To facilitate small-sample IRT estimation, we introduce a novel approach that does not rely on the likelihood. Our estimation approach derives features from response data and then maps the features to item parameters using a neural network (NN). We describe and evaluate our approach for the three-parameter logistic model; however, it is applicable to any model with an item characteristic curve. Three types of NNs are developed, supporting the obtainment of both point estimates and confidence intervals for IRT model parameters. The results of a simulation study demonstrate that these NNs perform better than Bayesian estimation using Markov chain Monte Carlo methods in terms of the quality of the point estimates and confidence intervals while also being much faster. These properties facilitate (1) pretesting items in a real-time testing environment, (2) pretesting more items and (3) pretesting items only in a secured environment to eradicate possible compromise of new items in online testing.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A supervised learning approach to estimating IRT models in small samples.\",\"authors\":\"Dmitry I Belov, Oliver Lüdtke, Esther Ulitzsch\",\"doi\":\"10.1111/bmsp.12396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing estimators of parameters of item response theory (IRT) models exploit the likelihood function. In small samples, however, the IRT likelihood oftentimes contains little informative value, potentially resulting in biased and/or unstable parameter estimates and large standard errors. To facilitate small-sample IRT estimation, we introduce a novel approach that does not rely on the likelihood. Our estimation approach derives features from response data and then maps the features to item parameters using a neural network (NN). We describe and evaluate our approach for the three-parameter logistic model; however, it is applicable to any model with an item characteristic curve. Three types of NNs are developed, supporting the obtainment of both point estimates and confidence intervals for IRT model parameters. The results of a simulation study demonstrate that these NNs perform better than Bayesian estimation using Markov chain Monte Carlo methods in terms of the quality of the point estimates and confidence intervals while also being much faster. These properties facilitate (1) pretesting items in a real-time testing environment, (2) pretesting more items and (3) pretesting items only in a secured environment to eradicate possible compromise of new items in online testing.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12396\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12396","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

现有的项目反应理论(IRT)模型参数估计方法利用了似然函数。然而,在小样本中,IRT似然通常包含很少的信息值,可能导致有偏差和/或不稳定的参数估计和大的标准误差。为了便于小样本IRT估计,我们引入了一种不依赖于似然的新方法。我们的估计方法从响应数据中提取特征,然后使用神经网络(NN)将特征映射到项目参数。我们描述并评估了我们的三参数逻辑模型的方法;但是,它适用于任何具有项目特征曲线的模型。开发了三种类型的神经网络,支持获得IRT模型参数的点估计和置信区间。仿真研究的结果表明,这些神经网络在点估计的质量和置信区间方面优于使用马尔可夫链蒙特卡罗方法的贝叶斯估计,同时速度也快得多。这些属性有助于(1)在实时测试环境中预测试项目,(2)预测试更多项目,(3)仅在安全环境中预测试项目,以消除在线测试中新项目的可能危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A supervised learning approach to estimating IRT models in small samples.

Existing estimators of parameters of item response theory (IRT) models exploit the likelihood function. In small samples, however, the IRT likelihood oftentimes contains little informative value, potentially resulting in biased and/or unstable parameter estimates and large standard errors. To facilitate small-sample IRT estimation, we introduce a novel approach that does not rely on the likelihood. Our estimation approach derives features from response data and then maps the features to item parameters using a neural network (NN). We describe and evaluate our approach for the three-parameter logistic model; however, it is applicable to any model with an item characteristic curve. Three types of NNs are developed, supporting the obtainment of both point estimates and confidence intervals for IRT model parameters. The results of a simulation study demonstrate that these NNs perform better than Bayesian estimation using Markov chain Monte Carlo methods in terms of the quality of the point estimates and confidence intervals while also being much faster. These properties facilitate (1) pretesting items in a real-time testing environment, (2) pretesting more items and (3) pretesting items only in a secured environment to eradicate possible compromise of new items in online testing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信