{"title":"在不同尺度上具有多个终点的聚类随机试验的总体治疗效果的基于秩的估计。","authors":"Emma Davies Smith, Vipul Jairath, Guangyong Zou","doi":"10.1177/09622802251338387","DOIUrl":null,"url":null,"abstract":"<p><p>Cluster randomized trials commonly employ multiple endpoints. When a single summary of treatment effects across endpoints is of primary interest, global methods represent a common analysis strategy. However, specification of the required joint distribution is non-trivial, particularly when the endpoints have different scales. We develop rank-based interval estimators for a global treatment effect referred to here as the \"global win probability, or the mean of multiple Wilcoxon Mann-Whitney probabilities, and interpreted as the probability that a treatment individual responds better than a control individual on average. Using endpoint-specific ranks among the combined sample and within each arm, each individual-level observation is converted to a \"win fraction\" which quantifies the proportion of wins experienced over every observation in the comparison arm. An individual's multiple observations are then replaced with a single \"global win fraction\" by averaging win fractions across endpoints. A linear mixed model is applied directly to the global win fractions to obtain point, variance, and interval estimates adjusted for clustering. Simulation demonstrates our approach performs well concerning confidence interval coverage and type I error, and methods are easily implemented using standard software. A case study using public data is provided with corresponding R and SAS code.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251338387"},"PeriodicalIF":1.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rank-based estimators of global treatment effects for cluster randomized trials with multiple endpoints on different scales.\",\"authors\":\"Emma Davies Smith, Vipul Jairath, Guangyong Zou\",\"doi\":\"10.1177/09622802251338387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cluster randomized trials commonly employ multiple endpoints. When a single summary of treatment effects across endpoints is of primary interest, global methods represent a common analysis strategy. However, specification of the required joint distribution is non-trivial, particularly when the endpoints have different scales. We develop rank-based interval estimators for a global treatment effect referred to here as the \\\"global win probability, or the mean of multiple Wilcoxon Mann-Whitney probabilities, and interpreted as the probability that a treatment individual responds better than a control individual on average. Using endpoint-specific ranks among the combined sample and within each arm, each individual-level observation is converted to a \\\"win fraction\\\" which quantifies the proportion of wins experienced over every observation in the comparison arm. An individual's multiple observations are then replaced with a single \\\"global win fraction\\\" by averaging win fractions across endpoints. A linear mixed model is applied directly to the global win fractions to obtain point, variance, and interval estimates adjusted for clustering. Simulation demonstrates our approach performs well concerning confidence interval coverage and type I error, and methods are easily implemented using standard software. A case study using public data is provided with corresponding R and SAS code.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802251338387\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802251338387\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251338387","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Rank-based estimators of global treatment effects for cluster randomized trials with multiple endpoints on different scales.
Cluster randomized trials commonly employ multiple endpoints. When a single summary of treatment effects across endpoints is of primary interest, global methods represent a common analysis strategy. However, specification of the required joint distribution is non-trivial, particularly when the endpoints have different scales. We develop rank-based interval estimators for a global treatment effect referred to here as the "global win probability, or the mean of multiple Wilcoxon Mann-Whitney probabilities, and interpreted as the probability that a treatment individual responds better than a control individual on average. Using endpoint-specific ranks among the combined sample and within each arm, each individual-level observation is converted to a "win fraction" which quantifies the proportion of wins experienced over every observation in the comparison arm. An individual's multiple observations are then replaced with a single "global win fraction" by averaging win fractions across endpoints. A linear mixed model is applied directly to the global win fractions to obtain point, variance, and interval estimates adjusted for clustering. Simulation demonstrates our approach performs well concerning confidence interval coverage and type I error, and methods are easily implemented using standard software. A case study using public data is provided with corresponding R and SAS code.
期刊介绍:
Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)