阐明杨树表皮蜡的干旱响应变化:脂肪酸生物合成相关基因的GWAS分析。

IF 3.5 2区 农林科学 Q1 FORESTRY
Melike Karaca-Bulut, Eliana Gonzales-Vigil, Wellington Muchero, Shawn D Mansfield
{"title":"阐明杨树表皮蜡的干旱响应变化:脂肪酸生物合成相关基因的GWAS分析。","authors":"Melike Karaca-Bulut, Eliana Gonzales-Vigil, Wellington Muchero, Shawn D Mansfield","doi":"10.1093/treephys/tpaf060","DOIUrl":null,"url":null,"abstract":"<p><p>Drought and episodic drought events are major impending impacts of climate change, limiting the productivity of plants and especially trees due to their inherent high transpiration rates. One common mechanism used by plants to cope with drought stress is to change the composition of their leaf cuticular waxes. Cuticular waxes are essential for controlling non-stomatal water loss and are typically composed of a homologous series of very-long-chain fatty acid-derived compounds, as well as flavonoids, tocopherols, triterpenoids, and phytosterols. In this study, we compared the cuticular waxes of 339 natural accessions of Populus trichocarpa (black cottonwood) grown under control and drought conditions in a common garden. A Genome-Wide Association Study (GWAS) was then used to identify candidate genes associated with cuticular wax biosynthesis and/or its regulation. Although no major differences were observed in total wax load when subject to drought conditions, the amounts of the individual wax constituents were indeed responsive to drought. Specifically, changes in alkenes, alcohols, esters, and aldehydes were evident, and suggest that they contribute to the drought response/tolerance in poplar. GWAS uncovered several genes linked to fatty acid biosynthesis, including CER1, CER3, CER4, FATB, FAB1, FAR3, FAR4, KCS, and a homolog of SOH1, as well as other candidate genes that may be involved in coordinating the drought responses in poplar trees. Our findings provide new evidence that genotype-specific shifts in wax composition, rather than total wax accumulation, contribute to drought adaptation in poplar. Additionally, we show that genetic variation in key wax biosynthetic genes drives cuticular wax plasticity in P. trichocarpa under drought, identifying putative molecular targets for improving stress resilience in trees. This study expands our understanding of the adaptative mechanisms of the cuticle and their potential for enhancing drought tolerance in poplar species.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the drought-responsive changes in Poplar cuticular waxes: A GWAS analysis of genes involved in fatty acid biosynthesis.\",\"authors\":\"Melike Karaca-Bulut, Eliana Gonzales-Vigil, Wellington Muchero, Shawn D Mansfield\",\"doi\":\"10.1093/treephys/tpaf060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drought and episodic drought events are major impending impacts of climate change, limiting the productivity of plants and especially trees due to their inherent high transpiration rates. One common mechanism used by plants to cope with drought stress is to change the composition of their leaf cuticular waxes. Cuticular waxes are essential for controlling non-stomatal water loss and are typically composed of a homologous series of very-long-chain fatty acid-derived compounds, as well as flavonoids, tocopherols, triterpenoids, and phytosterols. In this study, we compared the cuticular waxes of 339 natural accessions of Populus trichocarpa (black cottonwood) grown under control and drought conditions in a common garden. A Genome-Wide Association Study (GWAS) was then used to identify candidate genes associated with cuticular wax biosynthesis and/or its regulation. Although no major differences were observed in total wax load when subject to drought conditions, the amounts of the individual wax constituents were indeed responsive to drought. Specifically, changes in alkenes, alcohols, esters, and aldehydes were evident, and suggest that they contribute to the drought response/tolerance in poplar. GWAS uncovered several genes linked to fatty acid biosynthesis, including CER1, CER3, CER4, FATB, FAB1, FAR3, FAR4, KCS, and a homolog of SOH1, as well as other candidate genes that may be involved in coordinating the drought responses in poplar trees. Our findings provide new evidence that genotype-specific shifts in wax composition, rather than total wax accumulation, contribute to drought adaptation in poplar. Additionally, we show that genetic variation in key wax biosynthetic genes drives cuticular wax plasticity in P. trichocarpa under drought, identifying putative molecular targets for improving stress resilience in trees. This study expands our understanding of the adaptative mechanisms of the cuticle and their potential for enhancing drought tolerance in poplar species.</p>\",\"PeriodicalId\":23286,\"journal\":{\"name\":\"Tree physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tree physiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/treephys/tpaf060\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf060","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

干旱和偶发性干旱事件是气候变化即将产生的主要影响,由于植物,特别是树木固有的高蒸腾速率,限制了它们的生产力。植物应对干旱胁迫的一种常见机制是改变叶片角质层蜡质的组成。角质层蜡质对控制非气孔水分流失至关重要,通常由一系列同源的长链脂肪酸衍生化合物以及类黄酮、生育酚、三萜和植物甾醇组成。本研究比较了普通园林中339种天然毛杨(Populus trichocarpa)在对照和干旱条件下的表皮蜡质变化。然后利用全基因组关联研究(GWAS)鉴定与表皮蜡生物合成和/或其调控相关的候选基因。虽然在干旱条件下观察到的总蜡负荷没有重大差异,但个别蜡成分的数量确实对干旱有反应。特别是,烯烃、醇类、酯类和醛类的变化明显,表明它们对杨树的干旱响应/耐受性有贡献。GWAS发现了几个与脂肪酸生物合成相关的基因,包括CER1、CER3、CER4、FATB、FAB1、FAR3、FAR4、KCS和SOH1的同源基因,以及其他可能参与协调杨树干旱反应的候选基因。我们的发现提供了新的证据,表明基因型特异性的蜡组成变化,而不是总蜡积累,有助于杨树的干旱适应。此外,我们发现关键蜡合成基因的遗传变异驱动了干旱条件下毛卡柏角质层蜡的可塑性,确定了提高树木抗逆性的可能分子靶点。本研究扩大了我们对杨树角质层的适应机制及其提高抗旱性的潜力的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Elucidating the drought-responsive changes in Poplar cuticular waxes: A GWAS analysis of genes involved in fatty acid biosynthesis.

Drought and episodic drought events are major impending impacts of climate change, limiting the productivity of plants and especially trees due to their inherent high transpiration rates. One common mechanism used by plants to cope with drought stress is to change the composition of their leaf cuticular waxes. Cuticular waxes are essential for controlling non-stomatal water loss and are typically composed of a homologous series of very-long-chain fatty acid-derived compounds, as well as flavonoids, tocopherols, triterpenoids, and phytosterols. In this study, we compared the cuticular waxes of 339 natural accessions of Populus trichocarpa (black cottonwood) grown under control and drought conditions in a common garden. A Genome-Wide Association Study (GWAS) was then used to identify candidate genes associated with cuticular wax biosynthesis and/or its regulation. Although no major differences were observed in total wax load when subject to drought conditions, the amounts of the individual wax constituents were indeed responsive to drought. Specifically, changes in alkenes, alcohols, esters, and aldehydes were evident, and suggest that they contribute to the drought response/tolerance in poplar. GWAS uncovered several genes linked to fatty acid biosynthesis, including CER1, CER3, CER4, FATB, FAB1, FAR3, FAR4, KCS, and a homolog of SOH1, as well as other candidate genes that may be involved in coordinating the drought responses in poplar trees. Our findings provide new evidence that genotype-specific shifts in wax composition, rather than total wax accumulation, contribute to drought adaptation in poplar. Additionally, we show that genetic variation in key wax biosynthetic genes drives cuticular wax plasticity in P. trichocarpa under drought, identifying putative molecular targets for improving stress resilience in trees. This study expands our understanding of the adaptative mechanisms of the cuticle and their potential for enhancing drought tolerance in poplar species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tree physiology
Tree physiology 农林科学-林学
CiteScore
7.10
自引率
7.50%
发文量
133
审稿时长
1 months
期刊介绍: Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信