[三维打印微孔钛假体联合皮瓣植入治疗肢体大节段性感染性骨缺损的疗效]。

Q3 Medicine
Yongqing Xu, Xinyu Fan, Teng Wang, Shaoquan Pu, Xingbo Cai, Xiangwen Shi, Wei Lin, Xi Yang, Jian Li, Min Liu
{"title":"[三维打印微孔钛假体联合皮瓣植入治疗肢体大节段性感染性骨缺损的疗效]。","authors":"Yongqing Xu, Xinyu Fan, Teng Wang, Shaoquan Pu, Xingbo Cai, Xiangwen Shi, Wei Lin, Xi Yang, Jian Li, Min Liu","doi":"10.7507/1002-1892.202502045","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To analyze the effectiveness of single three-dimensional (3D)-printed microporous titanium prostheses and flap combined prostheses implantation in the treatment of large segmental infectious bone defects in limbs.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on the clinical data of 76 patients with large segmental infectious bone defects in limbs who were treated between January 2019 and February 2024 and met the selection criteria. Among them, 51 were male and 25 were female, with an age of (47.7±9.4) years. Of the 76 patients, 51 had no soft tissue defects (single prostheses group), while 25 had associated soft tissue defects (flap combined group). The single prostheses group included 28 cases of tibial bone defects, 11 cases of femoral defects, 5 cases of humeral defects, 4 cases of radial bone defects, and 3 cases of metacarpal, or carpal bone defects, with bone defect length ranging from 3.5 to 28.0 cm. The flap combined group included 3 cases of extensive dorsum of foot soft tissue defects combined with large segmental metatarsal bone defects, 19 cases of lower leg soft tissue defects combined with large segmental tibial bone defects, and 3 cases of hand and forearm soft tissue defects combined with metacarpal, carpal, or radial bone defects, with bone defect length ranging from 3.8 to 32.0 cm and soft tissue defect areas ranging from 8 cm×5 cm to 33 cm×10 cm. In the first stage, vancomycin-loaded bone cement was used to control infection, and flap repair was performed in the flap combined group. In the second stage, 3D-printed microporous titanium prostheses were implanted. Postoperative assessments were performed to evaluate infection control and bone integration, and pain release was evaluated using the visual analogue scale (VAS) score.</p><p><strong>Results: </strong>All patients were followed up postoperatively, with an average follow-up time of (35.2±13.4) months. In the 61 lower limb injury patients, the time of standing, walk with crutches, and fully bear weight were (2.2±0.6), (3.9±1.1), and (5.4±1.1) months, respectively. The VAS score at 1 year postoperatively was significantly lower than preoperative one ( <i>t</i>=-10.678, <i>P</i><0.001). At 1 year postoperatively, 69 patients (90.8%) showed no complication such as infection, fracture, prosthesis displacement, or breakage, and X-ray films indicated good integration at the prosthesis-bone interface. According to the Paley scoring system for the healing of infectious bone defects, the results were excellent in 37 cases, good in 29 cases, fair in 3 cases, and poor in 7 cases. In the single prostheses group, during the follow-up, there was 1 case each of femoral prostheses fracture, femoral infection, and tibial infection, with a treatment success rate of 94.1% (48/51). In lower limb injury patients, the time of fully bear weight was (5.0±1.0) months. In the flap combined group, during the follow-up, 1 case of tibial fixation prostheses screw fracture occurred, along with 2 cases of recurrent foot infection in diabetic patients and 1 case of tibial infection. The treatment success rate was 84.0% (21/25). The time of fully bear weight in lower limb injury patients was (5.8±1.2) months. The overall infection eradication rate for all patients was 93.4% (71/76).</p><p><strong>Conclusion: </strong>The use of 3D-printed microporous titanium prostheses, either alone or in combination with flaps, for the treatment of large segmental infectious bone defects in the limbs results in good effectiveness with a low incidence of complications. It is a feasible strategy for the reconstruction of infectious bone defects.</p>","PeriodicalId":23979,"journal":{"name":"中国修复重建外科杂志","volume":"39 5","pages":"521-528"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091716/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Effectiveness of three-dimensional-printed microporous titanium prostheses combined with flap implantation in treatment of large segmental infectious bone defects in limbs].\",\"authors\":\"Yongqing Xu, Xinyu Fan, Teng Wang, Shaoquan Pu, Xingbo Cai, Xiangwen Shi, Wei Lin, Xi Yang, Jian Li, Min Liu\",\"doi\":\"10.7507/1002-1892.202502045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To analyze the effectiveness of single three-dimensional (3D)-printed microporous titanium prostheses and flap combined prostheses implantation in the treatment of large segmental infectious bone defects in limbs.</p><p><strong>Methods: </strong>A retrospective analysis was conducted on the clinical data of 76 patients with large segmental infectious bone defects in limbs who were treated between January 2019 and February 2024 and met the selection criteria. Among them, 51 were male and 25 were female, with an age of (47.7±9.4) years. Of the 76 patients, 51 had no soft tissue defects (single prostheses group), while 25 had associated soft tissue defects (flap combined group). The single prostheses group included 28 cases of tibial bone defects, 11 cases of femoral defects, 5 cases of humeral defects, 4 cases of radial bone defects, and 3 cases of metacarpal, or carpal bone defects, with bone defect length ranging from 3.5 to 28.0 cm. The flap combined group included 3 cases of extensive dorsum of foot soft tissue defects combined with large segmental metatarsal bone defects, 19 cases of lower leg soft tissue defects combined with large segmental tibial bone defects, and 3 cases of hand and forearm soft tissue defects combined with metacarpal, carpal, or radial bone defects, with bone defect length ranging from 3.8 to 32.0 cm and soft tissue defect areas ranging from 8 cm×5 cm to 33 cm×10 cm. In the first stage, vancomycin-loaded bone cement was used to control infection, and flap repair was performed in the flap combined group. In the second stage, 3D-printed microporous titanium prostheses were implanted. Postoperative assessments were performed to evaluate infection control and bone integration, and pain release was evaluated using the visual analogue scale (VAS) score.</p><p><strong>Results: </strong>All patients were followed up postoperatively, with an average follow-up time of (35.2±13.4) months. In the 61 lower limb injury patients, the time of standing, walk with crutches, and fully bear weight were (2.2±0.6), (3.9±1.1), and (5.4±1.1) months, respectively. The VAS score at 1 year postoperatively was significantly lower than preoperative one ( <i>t</i>=-10.678, <i>P</i><0.001). At 1 year postoperatively, 69 patients (90.8%) showed no complication such as infection, fracture, prosthesis displacement, or breakage, and X-ray films indicated good integration at the prosthesis-bone interface. According to the Paley scoring system for the healing of infectious bone defects, the results were excellent in 37 cases, good in 29 cases, fair in 3 cases, and poor in 7 cases. In the single prostheses group, during the follow-up, there was 1 case each of femoral prostheses fracture, femoral infection, and tibial infection, with a treatment success rate of 94.1% (48/51). In lower limb injury patients, the time of fully bear weight was (5.0±1.0) months. In the flap combined group, during the follow-up, 1 case of tibial fixation prostheses screw fracture occurred, along with 2 cases of recurrent foot infection in diabetic patients and 1 case of tibial infection. The treatment success rate was 84.0% (21/25). The time of fully bear weight in lower limb injury patients was (5.8±1.2) months. The overall infection eradication rate for all patients was 93.4% (71/76).</p><p><strong>Conclusion: </strong>The use of 3D-printed microporous titanium prostheses, either alone or in combination with flaps, for the treatment of large segmental infectious bone defects in the limbs results in good effectiveness with a low incidence of complications. It is a feasible strategy for the reconstruction of infectious bone defects.</p>\",\"PeriodicalId\":23979,\"journal\":{\"name\":\"中国修复重建外科杂志\",\"volume\":\"39 5\",\"pages\":\"521-528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12091716/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国修复重建外科杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.7507/1002-1892.202502045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国修复重建外科杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.7507/1002-1892.202502045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

目的:分析单三维(3D)打印微孔钛假体与皮瓣联合假体植入术治疗肢体大面积感染性骨缺损的效果。方法:回顾性分析2019年1月至2024年2月收治的76例符合入选标准的肢体大节段性感染性骨缺损患者的临床资料。其中男性51例,女性25例,年龄(47.7±9.4)岁。76例患者中,51例无软组织缺损(单一假体组),25例伴有软组织缺损(皮瓣联合组)。单假体组胫骨骨缺损28例,股骨骨缺损11例,肱骨骨缺损5例,桡骨骨缺损4例,掌骨或腕骨缺损3例,骨缺损长度为3.5 ~ 28.0 cm。皮瓣联合组包括足背广泛软组织缺损合并大节段跖骨缺损3例,小腿软组织缺损合并大节段胫骨骨缺损19例,手、前臂软组织缺损合并掌骨、腕骨、桡骨缺损3例,骨缺损长度为3.8 ~ 32.0 cm,软组织缺损面积为8 cm×5 ~ 33 cm×10 cm。一期应用万古霉素载骨水泥控制感染,皮瓣联合组行皮瓣修复。第二阶段,植入3d打印的微孔钛假体。术后评估感染控制和骨整合,并使用视觉模拟评分(VAS)评分评估疼痛释放。结果:所有患者均获得术后随访,平均随访时间(35.2±13.4)个月。61例下肢损伤患者站立时间(2.2±0.6)个月,拄拐行走时间(3.9±1.1)个月,完全负重时间(5.4±1.1)个月。术后1年VAS评分明显低于术前(t=-10.678, p)。结论:应用3d打印微孔钛假体单独或联合皮瓣治疗肢体大节段性感染性骨缺损,效果好,并发症发生率低。这是一种可行的重建感染性骨缺损的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Effectiveness of three-dimensional-printed microporous titanium prostheses combined with flap implantation in treatment of large segmental infectious bone defects in limbs].

Objective: To analyze the effectiveness of single three-dimensional (3D)-printed microporous titanium prostheses and flap combined prostheses implantation in the treatment of large segmental infectious bone defects in limbs.

Methods: A retrospective analysis was conducted on the clinical data of 76 patients with large segmental infectious bone defects in limbs who were treated between January 2019 and February 2024 and met the selection criteria. Among them, 51 were male and 25 were female, with an age of (47.7±9.4) years. Of the 76 patients, 51 had no soft tissue defects (single prostheses group), while 25 had associated soft tissue defects (flap combined group). The single prostheses group included 28 cases of tibial bone defects, 11 cases of femoral defects, 5 cases of humeral defects, 4 cases of radial bone defects, and 3 cases of metacarpal, or carpal bone defects, with bone defect length ranging from 3.5 to 28.0 cm. The flap combined group included 3 cases of extensive dorsum of foot soft tissue defects combined with large segmental metatarsal bone defects, 19 cases of lower leg soft tissue defects combined with large segmental tibial bone defects, and 3 cases of hand and forearm soft tissue defects combined with metacarpal, carpal, or radial bone defects, with bone defect length ranging from 3.8 to 32.0 cm and soft tissue defect areas ranging from 8 cm×5 cm to 33 cm×10 cm. In the first stage, vancomycin-loaded bone cement was used to control infection, and flap repair was performed in the flap combined group. In the second stage, 3D-printed microporous titanium prostheses were implanted. Postoperative assessments were performed to evaluate infection control and bone integration, and pain release was evaluated using the visual analogue scale (VAS) score.

Results: All patients were followed up postoperatively, with an average follow-up time of (35.2±13.4) months. In the 61 lower limb injury patients, the time of standing, walk with crutches, and fully bear weight were (2.2±0.6), (3.9±1.1), and (5.4±1.1) months, respectively. The VAS score at 1 year postoperatively was significantly lower than preoperative one ( t=-10.678, P<0.001). At 1 year postoperatively, 69 patients (90.8%) showed no complication such as infection, fracture, prosthesis displacement, or breakage, and X-ray films indicated good integration at the prosthesis-bone interface. According to the Paley scoring system for the healing of infectious bone defects, the results were excellent in 37 cases, good in 29 cases, fair in 3 cases, and poor in 7 cases. In the single prostheses group, during the follow-up, there was 1 case each of femoral prostheses fracture, femoral infection, and tibial infection, with a treatment success rate of 94.1% (48/51). In lower limb injury patients, the time of fully bear weight was (5.0±1.0) months. In the flap combined group, during the follow-up, 1 case of tibial fixation prostheses screw fracture occurred, along with 2 cases of recurrent foot infection in diabetic patients and 1 case of tibial infection. The treatment success rate was 84.0% (21/25). The time of fully bear weight in lower limb injury patients was (5.8±1.2) months. The overall infection eradication rate for all patients was 93.4% (71/76).

Conclusion: The use of 3D-printed microporous titanium prostheses, either alone or in combination with flaps, for the treatment of large segmental infectious bone defects in the limbs results in good effectiveness with a low incidence of complications. It is a feasible strategy for the reconstruction of infectious bone defects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国修复重建外科杂志
中国修复重建外科杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
11334
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信