Grace R Sturrock, Amy T R Robison, Azim Dharani, Eric E Monson, Katherine J Franz, Michael C Fitzgerald
{"title":"外在和内在因素影响真核和原核蛋白质组中铜诱导的蛋白质沉淀。","authors":"Grace R Sturrock, Amy T R Robison, Azim Dharani, Eric E Monson, Katherine J Franz, Michael C Fitzgerald","doi":"10.1002/pro.70158","DOIUrl":null,"url":null,"abstract":"<p><p>The susceptibility of a protein to aggregation upon exposure to copper ions (Cu) has been recognized as a contributor to Cu-induced cellular dysfunction and toxicity. Different cell types succumb to Cu to varying degrees, indicating innate differences between species in the mechanisms used to tolerate exposure to Cu in excess of their biological needs. Investigated here are properties associated with metal-induced protein precipitation (MiPP) compared across cell lysates generated from three cell lines from three different species: Escherichia coli, Candida albicans, and the human prostate cancer cell line 22Rv1. The human cell line was the most sensitive to Cu-induced protein precipitation, while C. albicans was the most tolerant. This trend aligns with the relative susceptibilities of these cells to Cu-induced cytotoxicity. The unique susceptibilities of these proteomes to precipitation by Cu were examined to identify factors that influence a protein's relative sensitivity to this effect. Identified were intrinsic factors such as frequency and solvent accessibility of known metal-binding amino acids, as well as external factors related to the molecular composition of their native cell lysates. Overall, our findings help to elucidate the biomolecular basis underpinning the unique capacity of adventitious Cu to have differential effects on eukaryotic and prokaryotic organisms and the level of Cu needed to induce protein precipitation.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 6","pages":"e70158"},"PeriodicalIF":5.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079486/pdf/","citationCount":"0","resultStr":"{\"title\":\"Extrinsic and intrinsic factors affect copper-induced protein precipitation across eukaryotic and prokaryotic proteomes.\",\"authors\":\"Grace R Sturrock, Amy T R Robison, Azim Dharani, Eric E Monson, Katherine J Franz, Michael C Fitzgerald\",\"doi\":\"10.1002/pro.70158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The susceptibility of a protein to aggregation upon exposure to copper ions (Cu) has been recognized as a contributor to Cu-induced cellular dysfunction and toxicity. Different cell types succumb to Cu to varying degrees, indicating innate differences between species in the mechanisms used to tolerate exposure to Cu in excess of their biological needs. Investigated here are properties associated with metal-induced protein precipitation (MiPP) compared across cell lysates generated from three cell lines from three different species: Escherichia coli, Candida albicans, and the human prostate cancer cell line 22Rv1. The human cell line was the most sensitive to Cu-induced protein precipitation, while C. albicans was the most tolerant. This trend aligns with the relative susceptibilities of these cells to Cu-induced cytotoxicity. The unique susceptibilities of these proteomes to precipitation by Cu were examined to identify factors that influence a protein's relative sensitivity to this effect. Identified were intrinsic factors such as frequency and solvent accessibility of known metal-binding amino acids, as well as external factors related to the molecular composition of their native cell lysates. Overall, our findings help to elucidate the biomolecular basis underpinning the unique capacity of adventitious Cu to have differential effects on eukaryotic and prokaryotic organisms and the level of Cu needed to induce protein precipitation.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 6\",\"pages\":\"e70158\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079486/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70158\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70158","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Extrinsic and intrinsic factors affect copper-induced protein precipitation across eukaryotic and prokaryotic proteomes.
The susceptibility of a protein to aggregation upon exposure to copper ions (Cu) has been recognized as a contributor to Cu-induced cellular dysfunction and toxicity. Different cell types succumb to Cu to varying degrees, indicating innate differences between species in the mechanisms used to tolerate exposure to Cu in excess of their biological needs. Investigated here are properties associated with metal-induced protein precipitation (MiPP) compared across cell lysates generated from three cell lines from three different species: Escherichia coli, Candida albicans, and the human prostate cancer cell line 22Rv1. The human cell line was the most sensitive to Cu-induced protein precipitation, while C. albicans was the most tolerant. This trend aligns with the relative susceptibilities of these cells to Cu-induced cytotoxicity. The unique susceptibilities of these proteomes to precipitation by Cu were examined to identify factors that influence a protein's relative sensitivity to this effect. Identified were intrinsic factors such as frequency and solvent accessibility of known metal-binding amino acids, as well as external factors related to the molecular composition of their native cell lysates. Overall, our findings help to elucidate the biomolecular basis underpinning the unique capacity of adventitious Cu to have differential effects on eukaryotic and prokaryotic organisms and the level of Cu needed to induce protein precipitation.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).