利用亚棘桥霉生产高价值生物分子(叶绿素和蛋白质)的可持续生物加工优化。

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Sreya Sarkar, Sambit Sarkar, Sunil K Maity, Tridib Kumar Bhowmick, Kalyan Gayen
{"title":"利用亚棘桥霉生产高价值生物分子(叶绿素和蛋白质)的可持续生物加工优化。","authors":"Sreya Sarkar, Sambit Sarkar, Sunil K Maity, Tridib Kumar Bhowmick, Kalyan Gayen","doi":"10.1080/10826068.2025.2502765","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional protein and pigment (e.g., chlorophyll) sources are becoming insufficient due to the rapid rise of the global population in modern civilization. Microalgae offer a promising solution for protein and chlorophyll sources due to their higher productivity than terrestrial plants. This study aims to optimize the cultivation conditions for <i>Desmodesmus subspicatus</i>, a microalgal strain containing ∼60% protein and 4% chlorophyll, to enhance biomass, protein and chlorophyll productivity. A Taguchi Orthogonal Array (TOA) was used for systematic optimization of BG-11 medium components. Further experiments assessed the effects of light intensity and different carbon and nitrogen sources. Under optimized BG-11 conditions, biomass increased 1.3-fold, with protein and chlorophyll productivity rising 2.25 and 1.92-fold, respectively. Supplementation with carbon and nitrogen sources under varying light (84-504 µmol m<sup>-2</sup> s<sup>-1</sup>) further enhanced yields by 1.6-fold. Glycine proved to be the most effective nitrogen source, while cellulose as a carbon source resulted in 2.4-fold higher biomass, 7.3-fold higher protein, and 2.3-fold higher chlorophyll. Cytotoxicity assessment of the extracted chlorophyll revealed over 94% A549 cell viability at concentrations up to 100 µg/mL, confirming its biocompatibility. Therefore, <i>Desmodesmus subspicatus</i> has promise as a sustainable source of proteins and chlorophylls in the nutraceutical and food industries.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-16"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of sustainable bioprocessing for the production of high-value biomolecules (chlorophylls and proteins) using <i>Desmodesmus subspicatus</i>.\",\"authors\":\"Sreya Sarkar, Sambit Sarkar, Sunil K Maity, Tridib Kumar Bhowmick, Kalyan Gayen\",\"doi\":\"10.1080/10826068.2025.2502765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional protein and pigment (e.g., chlorophyll) sources are becoming insufficient due to the rapid rise of the global population in modern civilization. Microalgae offer a promising solution for protein and chlorophyll sources due to their higher productivity than terrestrial plants. This study aims to optimize the cultivation conditions for <i>Desmodesmus subspicatus</i>, a microalgal strain containing ∼60% protein and 4% chlorophyll, to enhance biomass, protein and chlorophyll productivity. A Taguchi Orthogonal Array (TOA) was used for systematic optimization of BG-11 medium components. Further experiments assessed the effects of light intensity and different carbon and nitrogen sources. Under optimized BG-11 conditions, biomass increased 1.3-fold, with protein and chlorophyll productivity rising 2.25 and 1.92-fold, respectively. Supplementation with carbon and nitrogen sources under varying light (84-504 µmol m<sup>-2</sup> s<sup>-1</sup>) further enhanced yields by 1.6-fold. Glycine proved to be the most effective nitrogen source, while cellulose as a carbon source resulted in 2.4-fold higher biomass, 7.3-fold higher protein, and 2.3-fold higher chlorophyll. Cytotoxicity assessment of the extracted chlorophyll revealed over 94% A549 cell viability at concentrations up to 100 µg/mL, confirming its biocompatibility. Therefore, <i>Desmodesmus subspicatus</i> has promise as a sustainable source of proteins and chlorophylls in the nutraceutical and food industries.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2025.2502765\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2502765","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由于现代文明中全球人口的迅速增长,传统的蛋白质和色素(如叶绿素)来源正变得不足。微藻由于其比陆生植物具有更高的生产力,为蛋白质和叶绿素来源提供了一个有希望的解决方案。本研究旨在优化亚棘桥藻(Desmodesmus subspicatus)的培养条件,以提高其生物量、蛋白质和叶绿素产量,这是一种含有60%蛋白质和4%叶绿素的微藻菌株。采用田口正交阵列(TOA)对BG-11培养基成分进行了系统优化。进一步的实验评估了光照强度和不同碳氮源的影响。优化后的BG-11条件下,生物量增加了1.3倍,蛋白质和叶绿素产量分别增加了2.25倍和1.92倍。在不同光照(84-504µmol m-2 s-1)下添加碳源和氮源,产量进一步提高1.6倍。甘氨酸被证明是最有效的氮源,而纤维素作为碳源使生物量增加2.4倍,蛋白质增加7.3倍,叶绿素增加2.3倍。对提取的叶绿素进行细胞毒性评估,在浓度高达100µg/mL时,A549细胞存活率超过94%,证实了其生物相容性。因此,在营养保健和食品工业中,亚棘连丝霉有望成为蛋白质和叶绿素的可持续来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of sustainable bioprocessing for the production of high-value biomolecules (chlorophylls and proteins) using Desmodesmus subspicatus.

Traditional protein and pigment (e.g., chlorophyll) sources are becoming insufficient due to the rapid rise of the global population in modern civilization. Microalgae offer a promising solution for protein and chlorophyll sources due to their higher productivity than terrestrial plants. This study aims to optimize the cultivation conditions for Desmodesmus subspicatus, a microalgal strain containing ∼60% protein and 4% chlorophyll, to enhance biomass, protein and chlorophyll productivity. A Taguchi Orthogonal Array (TOA) was used for systematic optimization of BG-11 medium components. Further experiments assessed the effects of light intensity and different carbon and nitrogen sources. Under optimized BG-11 conditions, biomass increased 1.3-fold, with protein and chlorophyll productivity rising 2.25 and 1.92-fold, respectively. Supplementation with carbon and nitrogen sources under varying light (84-504 µmol m-2 s-1) further enhanced yields by 1.6-fold. Glycine proved to be the most effective nitrogen source, while cellulose as a carbon source resulted in 2.4-fold higher biomass, 7.3-fold higher protein, and 2.3-fold higher chlorophyll. Cytotoxicity assessment of the extracted chlorophyll revealed over 94% A549 cell viability at concentrations up to 100 µg/mL, confirming its biocompatibility. Therefore, Desmodesmus subspicatus has promise as a sustainable source of proteins and chlorophylls in the nutraceutical and food industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信