{"title":"提高微电网承载能力:基于BONMIN求解器的两阶段电池存储分配和运行能量管理策略框架。","authors":"Ziad M Ali","doi":"10.1371/journal.pone.0323525","DOIUrl":null,"url":null,"abstract":"<p><p>The growing concerns over fossil fuel dependency, environmental impacts, and escalating energy expenses highlight the critical importance of enhancing energy system efficiency. This study presents a dual-phase optimization approach for improving grid-connected microgrid (μG) operations, focusing on Sodium-Sulfur (NaS) and Sodium Nickel Chloride (Na-NiCl₂) battery storage systems. The problem was structured as a mixed-integer nonlinear programming (MINLP) model and resolved using GAMS software with its embedded open-source BONMIN solver. The initial phase establishes optimal battery storage system (BSS) allocation methods to optimize renewable energy source (RES) self-consumption (SC), increase hosting capacity (HC), and minimize operational expenses. Building on these results, the second phase develops optimal microgrid operational strategies to reduce total operating costs further. The research evaluates five scenarios with incrementally increasing the number of BSSs, ranging from one to five units. Through this systematic analysis, the work demonstrates that both the quantity and type of BSS units significantly impact μG operating costs. The most efficient configuration emerged in Case 3, where three Na-NiCl₂ BSS units achieved a 32.35% reduction in operating costs. Additionally, the integration of BSS demonstrated notable improvements in both HC and SC rates.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0323525"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084041/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving microgrid hosting capacity: A two-stage BONMIN solver-based framework for battery storage allocation and operational energy management strategy.\",\"authors\":\"Ziad M Ali\",\"doi\":\"10.1371/journal.pone.0323525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The growing concerns over fossil fuel dependency, environmental impacts, and escalating energy expenses highlight the critical importance of enhancing energy system efficiency. This study presents a dual-phase optimization approach for improving grid-connected microgrid (μG) operations, focusing on Sodium-Sulfur (NaS) and Sodium Nickel Chloride (Na-NiCl₂) battery storage systems. The problem was structured as a mixed-integer nonlinear programming (MINLP) model and resolved using GAMS software with its embedded open-source BONMIN solver. The initial phase establishes optimal battery storage system (BSS) allocation methods to optimize renewable energy source (RES) self-consumption (SC), increase hosting capacity (HC), and minimize operational expenses. Building on these results, the second phase develops optimal microgrid operational strategies to reduce total operating costs further. The research evaluates five scenarios with incrementally increasing the number of BSSs, ranging from one to five units. Through this systematic analysis, the work demonstrates that both the quantity and type of BSS units significantly impact μG operating costs. The most efficient configuration emerged in Case 3, where three Na-NiCl₂ BSS units achieved a 32.35% reduction in operating costs. Additionally, the integration of BSS demonstrated notable improvements in both HC and SC rates.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 5\",\"pages\":\"e0323525\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12084041/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0323525\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0323525","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Improving microgrid hosting capacity: A two-stage BONMIN solver-based framework for battery storage allocation and operational energy management strategy.
The growing concerns over fossil fuel dependency, environmental impacts, and escalating energy expenses highlight the critical importance of enhancing energy system efficiency. This study presents a dual-phase optimization approach for improving grid-connected microgrid (μG) operations, focusing on Sodium-Sulfur (NaS) and Sodium Nickel Chloride (Na-NiCl₂) battery storage systems. The problem was structured as a mixed-integer nonlinear programming (MINLP) model and resolved using GAMS software with its embedded open-source BONMIN solver. The initial phase establishes optimal battery storage system (BSS) allocation methods to optimize renewable energy source (RES) self-consumption (SC), increase hosting capacity (HC), and minimize operational expenses. Building on these results, the second phase develops optimal microgrid operational strategies to reduce total operating costs further. The research evaluates five scenarios with incrementally increasing the number of BSSs, ranging from one to five units. Through this systematic analysis, the work demonstrates that both the quantity and type of BSS units significantly impact μG operating costs. The most efficient configuration emerged in Case 3, where three Na-NiCl₂ BSS units achieved a 32.35% reduction in operating costs. Additionally, the integration of BSS demonstrated notable improvements in both HC and SC rates.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage