{"title":"TREK K2P通道的热敏性由PKA开关控制,并取决于微管网络。","authors":"Sönke Cordeiro, Marianne Musinszki","doi":"10.1007/s00424-025-03089-1","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature sensing is an essential component of animal perception and enables individuals to avoid painful or lethal temperatures. Many temperature sensors in central and peripheral neurons are ion channels. Here, we focus on the thermosensitive TREK/TRAAK subfamily of K2P channels-the only known K<sup>+</sup> selective thermosensitive channels. The C-terminal domain is essential for the temperature activation of TREK channels, but the mechanism of temperature sensation and the nature of the temperature sensor are unknown. We studied the thermosensitivity of representatives of all K2P channel subfamilies and identified TREK-1 and TREK-2 as the only thermosensitive K2P channels, while TRAAK, the third member of the mechano-gated subfamily, showed no temperature dependence. We transferred the thermosensitivity of TREK-1 to TRAAK channels by exchanging the C-termini, demonstrating that the C-terminal domain is sufficient to confer thermosensitivity. By gradually truncating the C-terminus, we isolated a specific temperature responsive element (TRE) consisting of 18 amino acids that constitutes a unique feature in mammalian thermosensitive channels. Within this TRE lie both the binding domain for microtubule associated protein 2 (MAP2) and the PKA phosphorylation site. Pharmacological disruption of the microtubular network as well as the loss of the MAP2 binding site suppressed the temperature response, and PKA activation completely abolished temperature sensitivity. Thus, the connection to the microtubular network enables the thermosensitivity of TREK channels, which is not intrinsic to the channel itself, while the PKA-mediated phosphorylation status acts as a switch that determines if TREK channels are thermosensitive at all.</p>","PeriodicalId":19954,"journal":{"name":"Pflugers Archiv : European journal of physiology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermosensitivity of TREK K2P channels is controlled by a PKA switch and depends on the microtubular network.\",\"authors\":\"Sönke Cordeiro, Marianne Musinszki\",\"doi\":\"10.1007/s00424-025-03089-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Temperature sensing is an essential component of animal perception and enables individuals to avoid painful or lethal temperatures. Many temperature sensors in central and peripheral neurons are ion channels. Here, we focus on the thermosensitive TREK/TRAAK subfamily of K2P channels-the only known K<sup>+</sup> selective thermosensitive channels. The C-terminal domain is essential for the temperature activation of TREK channels, but the mechanism of temperature sensation and the nature of the temperature sensor are unknown. We studied the thermosensitivity of representatives of all K2P channel subfamilies and identified TREK-1 and TREK-2 as the only thermosensitive K2P channels, while TRAAK, the third member of the mechano-gated subfamily, showed no temperature dependence. We transferred the thermosensitivity of TREK-1 to TRAAK channels by exchanging the C-termini, demonstrating that the C-terminal domain is sufficient to confer thermosensitivity. By gradually truncating the C-terminus, we isolated a specific temperature responsive element (TRE) consisting of 18 amino acids that constitutes a unique feature in mammalian thermosensitive channels. Within this TRE lie both the binding domain for microtubule associated protein 2 (MAP2) and the PKA phosphorylation site. Pharmacological disruption of the microtubular network as well as the loss of the MAP2 binding site suppressed the temperature response, and PKA activation completely abolished temperature sensitivity. Thus, the connection to the microtubular network enables the thermosensitivity of TREK channels, which is not intrinsic to the channel itself, while the PKA-mediated phosphorylation status acts as a switch that determines if TREK channels are thermosensitive at all.</p>\",\"PeriodicalId\":19954,\"journal\":{\"name\":\"Pflugers Archiv : European journal of physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pflugers Archiv : European journal of physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00424-025-03089-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflugers Archiv : European journal of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00424-025-03089-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Thermosensitivity of TREK K2P channels is controlled by a PKA switch and depends on the microtubular network.
Temperature sensing is an essential component of animal perception and enables individuals to avoid painful or lethal temperatures. Many temperature sensors in central and peripheral neurons are ion channels. Here, we focus on the thermosensitive TREK/TRAAK subfamily of K2P channels-the only known K+ selective thermosensitive channels. The C-terminal domain is essential for the temperature activation of TREK channels, but the mechanism of temperature sensation and the nature of the temperature sensor are unknown. We studied the thermosensitivity of representatives of all K2P channel subfamilies and identified TREK-1 and TREK-2 as the only thermosensitive K2P channels, while TRAAK, the third member of the mechano-gated subfamily, showed no temperature dependence. We transferred the thermosensitivity of TREK-1 to TRAAK channels by exchanging the C-termini, demonstrating that the C-terminal domain is sufficient to confer thermosensitivity. By gradually truncating the C-terminus, we isolated a specific temperature responsive element (TRE) consisting of 18 amino acids that constitutes a unique feature in mammalian thermosensitive channels. Within this TRE lie both the binding domain for microtubule associated protein 2 (MAP2) and the PKA phosphorylation site. Pharmacological disruption of the microtubular network as well as the loss of the MAP2 binding site suppressed the temperature response, and PKA activation completely abolished temperature sensitivity. Thus, the connection to the microtubular network enables the thermosensitivity of TREK channels, which is not intrinsic to the channel itself, while the PKA-mediated phosphorylation status acts as a switch that determines if TREK channels are thermosensitive at all.
期刊介绍:
Pflügers Archiv European Journal of Physiology publishes those results of original research that are seen as advancing the physiological sciences, especially those providing mechanistic insights into physiological functions at the molecular and cellular level, and clearly conveying a physiological message. Submissions are encouraged that deal with the evaluation of molecular and cellular mechanisms of disease, ideally resulting in translational research. Purely descriptive papers covering applied physiology or clinical papers will be excluded. Papers on methodological topics will be considered if they contribute to the development of novel tools for further investigation of (patho)physiological mechanisms.