Elisama Helvecio, Antonio Mauro Rezende, Maria J R Bezerra, Osvaldo Pompílio de-Melo-Neto, Maria Alice Varjal de Melo Santos, Tatiany Patrícia Romão, Constância Flávia Junqueira Ayres
{"title":"耐双硫磷埃及伊蚊幼虫中肠组织转录细胞反应的表征。","authors":"Elisama Helvecio, Antonio Mauro Rezende, Maria J R Bezerra, Osvaldo Pompílio de-Melo-Neto, Maria Alice Varjal de Melo Santos, Tatiany Patrícia Romão, Constância Flávia Junqueira Ayres","doi":"10.1186/s13071-025-06675-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Resistance to organophosphate compounds is a serious concern in dealing with the control of mosquito vectors. Understanding the genetic and molecular basis of resistance is important not only to create strategies aimed at detecting and monitoring resistance in the field but also to implement efficient control measures and support the development of new insecticides. Despite the extensive literature on insecticide resistance, the molecular basis of metabolic resistance is still poorly understood.</p><p><strong>Methods: </strong>To better understand the mechanisms of Aedes aegypti resistance to temephos, we performed high-throughput sequencing of RNA from the midgut tissue of Aedes aegypti larvae from a temephos-resistant laboratory colony, with long-term and continuous exposure to this insecticide (RecR), as well as from a reference, temephos-susceptible, colony (RecL). Bioinformatic analyses were then performed to assess the biological functions of differentially expressed genes, and the sequencing data were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR).</p><p><strong>Results: </strong>The transcriptome analysis mapped 6.084 genes, of which 202 were considered upregulated in RecR, including known and new genes representing many detoxification enzyme families, such as cytochrome-P450 oxidative enzymes, glutathione-S-transferases and glucosyl transferases. Other upregulated genes were mainly involved in the cuticle, carbohydrates and lipid biosynthesis. For the downregulated profiles, we found 106 downregulated genes in the RecR colony, with molecules involved in protein synthesis, immunity and apoptosis process. Furthermore, we observed an enrichment of KEGG metabolic pathways related to resistance mechanisms. The results found in RT-qPCR confirm the findings of the transcriptome data.</p><p><strong>Conclusions: </strong>In this study, we investigated transcriptome-level changes maintained in a temephos-resistant Ae. aegypti colony under continuous and prolonged selection pressure. Our results indicate that metabolic resistance might involve a larger and more significant number of detoxification enzymes, with different functional roles, than previously shown with other mechanisms, also contributing to the resistance phenotype in the Ae. aegypti RecR colony.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"18 1","pages":"174"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076995/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of the transcriptional cellular response in midgut tissue of temephos-resistant Aedes aegypti larvae.\",\"authors\":\"Elisama Helvecio, Antonio Mauro Rezende, Maria J R Bezerra, Osvaldo Pompílio de-Melo-Neto, Maria Alice Varjal de Melo Santos, Tatiany Patrícia Romão, Constância Flávia Junqueira Ayres\",\"doi\":\"10.1186/s13071-025-06675-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Resistance to organophosphate compounds is a serious concern in dealing with the control of mosquito vectors. Understanding the genetic and molecular basis of resistance is important not only to create strategies aimed at detecting and monitoring resistance in the field but also to implement efficient control measures and support the development of new insecticides. Despite the extensive literature on insecticide resistance, the molecular basis of metabolic resistance is still poorly understood.</p><p><strong>Methods: </strong>To better understand the mechanisms of Aedes aegypti resistance to temephos, we performed high-throughput sequencing of RNA from the midgut tissue of Aedes aegypti larvae from a temephos-resistant laboratory colony, with long-term and continuous exposure to this insecticide (RecR), as well as from a reference, temephos-susceptible, colony (RecL). Bioinformatic analyses were then performed to assess the biological functions of differentially expressed genes, and the sequencing data were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR).</p><p><strong>Results: </strong>The transcriptome analysis mapped 6.084 genes, of which 202 were considered upregulated in RecR, including known and new genes representing many detoxification enzyme families, such as cytochrome-P450 oxidative enzymes, glutathione-S-transferases and glucosyl transferases. Other upregulated genes were mainly involved in the cuticle, carbohydrates and lipid biosynthesis. For the downregulated profiles, we found 106 downregulated genes in the RecR colony, with molecules involved in protein synthesis, immunity and apoptosis process. Furthermore, we observed an enrichment of KEGG metabolic pathways related to resistance mechanisms. The results found in RT-qPCR confirm the findings of the transcriptome data.</p><p><strong>Conclusions: </strong>In this study, we investigated transcriptome-level changes maintained in a temephos-resistant Ae. aegypti colony under continuous and prolonged selection pressure. Our results indicate that metabolic resistance might involve a larger and more significant number of detoxification enzymes, with different functional roles, than previously shown with other mechanisms, also contributing to the resistance phenotype in the Ae. aegypti RecR colony.</p>\",\"PeriodicalId\":19793,\"journal\":{\"name\":\"Parasites & Vectors\",\"volume\":\"18 1\",\"pages\":\"174\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076995/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasites & Vectors\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13071-025-06675-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-025-06675-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Characterization of the transcriptional cellular response in midgut tissue of temephos-resistant Aedes aegypti larvae.
Background: Resistance to organophosphate compounds is a serious concern in dealing with the control of mosquito vectors. Understanding the genetic and molecular basis of resistance is important not only to create strategies aimed at detecting and monitoring resistance in the field but also to implement efficient control measures and support the development of new insecticides. Despite the extensive literature on insecticide resistance, the molecular basis of metabolic resistance is still poorly understood.
Methods: To better understand the mechanisms of Aedes aegypti resistance to temephos, we performed high-throughput sequencing of RNA from the midgut tissue of Aedes aegypti larvae from a temephos-resistant laboratory colony, with long-term and continuous exposure to this insecticide (RecR), as well as from a reference, temephos-susceptible, colony (RecL). Bioinformatic analyses were then performed to assess the biological functions of differentially expressed genes, and the sequencing data were validated by quantitative reverse transcription-polymerase chain reaction (RT-qPCR).
Results: The transcriptome analysis mapped 6.084 genes, of which 202 were considered upregulated in RecR, including known and new genes representing many detoxification enzyme families, such as cytochrome-P450 oxidative enzymes, glutathione-S-transferases and glucosyl transferases. Other upregulated genes were mainly involved in the cuticle, carbohydrates and lipid biosynthesis. For the downregulated profiles, we found 106 downregulated genes in the RecR colony, with molecules involved in protein synthesis, immunity and apoptosis process. Furthermore, we observed an enrichment of KEGG metabolic pathways related to resistance mechanisms. The results found in RT-qPCR confirm the findings of the transcriptome data.
Conclusions: In this study, we investigated transcriptome-level changes maintained in a temephos-resistant Ae. aegypti colony under continuous and prolonged selection pressure. Our results indicate that metabolic resistance might involve a larger and more significant number of detoxification enzymes, with different functional roles, than previously shown with other mechanisms, also contributing to the resistance phenotype in the Ae. aegypti RecR colony.
期刊介绍:
Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish.
Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.