Agnieszka Babczyńska, Monika Tarnawska, Klaudia Czaja, Barbara Flasz, Amrendra K Ajay, Łukasz Napora-Rutkowski, Katarzyna Rozpędek, Ewa Świerczek, Andrzej Kędziorski, Maria Augustyniak
{"title":"食物中氧化石墨烯对几代家蟋蟀消化酶活性的影响。","authors":"Agnieszka Babczyńska, Monika Tarnawska, Klaudia Czaja, Barbara Flasz, Amrendra K Ajay, Łukasz Napora-Rutkowski, Katarzyna Rozpędek, Ewa Świerczek, Andrzej Kędziorski, Maria Augustyniak","doi":"10.1080/17435390.2025.2500430","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing usage of nanoparticles or nanomaterials may lead to their release into the environment. The toxicity of these structures, classified as contaminants of emerging concern, is not yet sufficiently understood. However, as in the case of other environmental stressors, the effects of exposure to them should be analyzed on a multigenerational scale to predict the consequences for exposed populations. Therefore, this project aimed to assess the impact of graphene oxide (GO) nanomaterial on digestive enzyme activities in the house cricket <i>Acheta domesticus</i> as a model species, depending on GO concentration (0.2 or 0.02 µg·g<sup>-1 </sup>dry weight of food), previous selection for longevity and the number of generations (1-5) that have occurred since the beginning of exposure. The last and sixth generations were insects for which GO was withdrawn from the diet (recovery generation). Enzymatic activity was tested using API Zym kit modified for spectrophotometric reads. The tests revealed that GO intervenes with some digestive enzymes. Moreover, the effects of GO depend on the population's previous selection for longevity. The impact of mechanisms mitigating the consequences of aging supports the possible tolerance to GO intoxication. It demonstrated itself in diverse patterns of multigenerational response to GO in wild and long-lived insects. Also, multigenerational exposure revealed the 'third generation' effect. Finally, the impact of GO elimination depended on the concentration of nanomaterial used for the tests. Also, the potential impact of concentration-dependent agglomeration of GO in the context of hormesis has been discussed.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-14"},"PeriodicalIF":3.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects on digestive enzyme activities in the house crickets <i>Acheta domesticus</i> exposed to graphene oxide in food for several generations.\",\"authors\":\"Agnieszka Babczyńska, Monika Tarnawska, Klaudia Czaja, Barbara Flasz, Amrendra K Ajay, Łukasz Napora-Rutkowski, Katarzyna Rozpędek, Ewa Świerczek, Andrzej Kędziorski, Maria Augustyniak\",\"doi\":\"10.1080/17435390.2025.2500430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing usage of nanoparticles or nanomaterials may lead to their release into the environment. The toxicity of these structures, classified as contaminants of emerging concern, is not yet sufficiently understood. However, as in the case of other environmental stressors, the effects of exposure to them should be analyzed on a multigenerational scale to predict the consequences for exposed populations. Therefore, this project aimed to assess the impact of graphene oxide (GO) nanomaterial on digestive enzyme activities in the house cricket <i>Acheta domesticus</i> as a model species, depending on GO concentration (0.2 or 0.02 µg·g<sup>-1 </sup>dry weight of food), previous selection for longevity and the number of generations (1-5) that have occurred since the beginning of exposure. The last and sixth generations were insects for which GO was withdrawn from the diet (recovery generation). Enzymatic activity was tested using API Zym kit modified for spectrophotometric reads. The tests revealed that GO intervenes with some digestive enzymes. Moreover, the effects of GO depend on the population's previous selection for longevity. The impact of mechanisms mitigating the consequences of aging supports the possible tolerance to GO intoxication. It demonstrated itself in diverse patterns of multigenerational response to GO in wild and long-lived insects. Also, multigenerational exposure revealed the 'third generation' effect. Finally, the impact of GO elimination depended on the concentration of nanomaterial used for the tests. Also, the potential impact of concentration-dependent agglomeration of GO in the context of hormesis has been discussed.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2025.2500430\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2025.2500430","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Effects on digestive enzyme activities in the house crickets Acheta domesticus exposed to graphene oxide in food for several generations.
Increasing usage of nanoparticles or nanomaterials may lead to their release into the environment. The toxicity of these structures, classified as contaminants of emerging concern, is not yet sufficiently understood. However, as in the case of other environmental stressors, the effects of exposure to them should be analyzed on a multigenerational scale to predict the consequences for exposed populations. Therefore, this project aimed to assess the impact of graphene oxide (GO) nanomaterial on digestive enzyme activities in the house cricket Acheta domesticus as a model species, depending on GO concentration (0.2 or 0.02 µg·g-1 dry weight of food), previous selection for longevity and the number of generations (1-5) that have occurred since the beginning of exposure. The last and sixth generations were insects for which GO was withdrawn from the diet (recovery generation). Enzymatic activity was tested using API Zym kit modified for spectrophotometric reads. The tests revealed that GO intervenes with some digestive enzymes. Moreover, the effects of GO depend on the population's previous selection for longevity. The impact of mechanisms mitigating the consequences of aging supports the possible tolerance to GO intoxication. It demonstrated itself in diverse patterns of multigenerational response to GO in wild and long-lived insects. Also, multigenerational exposure revealed the 'third generation' effect. Finally, the impact of GO elimination depended on the concentration of nanomaterial used for the tests. Also, the potential impact of concentration-dependent agglomeration of GO in the context of hormesis has been discussed.
期刊介绍:
Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology .
While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.