外周脂联素通过调节糖代谢对老年大鼠围手术期神经认知障碍的影响。

IF 1.6 4区 医学 Q4 NEUROSCIENCES
Neuroreport Pub Date : 2025-07-02 Epub Date: 2025-04-30 DOI:10.1097/WNR.0000000000002169
Zhijing Zhang, Chengyuan Hu, Yuqing Chi, Baiqin Su, Huiqun Chen, Haihui Xie
{"title":"外周脂联素通过调节糖代谢对老年大鼠围手术期神经认知障碍的影响。","authors":"Zhijing Zhang, Chengyuan Hu, Yuqing Chi, Baiqin Su, Huiqun Chen, Haihui Xie","doi":"10.1097/WNR.0000000000002169","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Perioperative neurocognitive disorder (PND) is a significant complication affecting elderly patients after surgery, with limited effective interventions to improve its prognosis yet. We have found that decreased serum adiponectin (APN) and increased cerebrospinal fluid (CSF) lactate are involved in the pathophysiological process of PND in elderly patients. APN is known for its anti-insulin resistance property. In this study, we further explored the regulatory effects of APN on cerebral glucose metabolism in PND rats.</p><p><strong>Methods: </strong>Twelve-month-old male Sprague-Dawley rats were divided into 3 groups: the sham, PND (splenectomy) and PND+APN (50 mg/kg/day intragastrically) groups. ELISA, quantitative PCR and colorimetric analysis were conducted to analyze tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), pyruvate and lactate in serum, CSF and hippocampus. Open field and Morris water maze (MWM) tests were used to detect hippocampus-dependent cognitive function. Western blot and flow cytometry were conducted to detect neuronal apoptosis in primary hippocampal neurons.</p><p><strong>Results: </strong>In vivo, peripheral APN administration reversed surgery-induced reductions in serum APN expression and elevated levels of cerebral lactate, the ratio of lactate/pyruvate, TNF-α and IL-1β, thereby improving cognitive performance in MWM and Open Field tests. In vitro, APN at concentrations of 2 and 10 ng/ml dose-dependently reduced lipopolysaccharide-induced caspase 3 expression and p38 phosphorylation in neurons, inhibiting apoptosis.</p><p><strong>Conclusions: </strong>Cerebral hypometabolism is one of the pathogenic mechanisms of PND. APN shows its effects on regulating glucose metabolism to inhibit neuroinflammation and neuronal apoptosis in PND. And the underlying mechanism of APN should be investigated further.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"505-513"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of peripheral adiponectin on perioperative neurocognitive disorder via regulation of glucose metabolism in aged rats.\",\"authors\":\"Zhijing Zhang, Chengyuan Hu, Yuqing Chi, Baiqin Su, Huiqun Chen, Haihui Xie\",\"doi\":\"10.1097/WNR.0000000000002169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Perioperative neurocognitive disorder (PND) is a significant complication affecting elderly patients after surgery, with limited effective interventions to improve its prognosis yet. We have found that decreased serum adiponectin (APN) and increased cerebrospinal fluid (CSF) lactate are involved in the pathophysiological process of PND in elderly patients. APN is known for its anti-insulin resistance property. In this study, we further explored the regulatory effects of APN on cerebral glucose metabolism in PND rats.</p><p><strong>Methods: </strong>Twelve-month-old male Sprague-Dawley rats were divided into 3 groups: the sham, PND (splenectomy) and PND+APN (50 mg/kg/day intragastrically) groups. ELISA, quantitative PCR and colorimetric analysis were conducted to analyze tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), pyruvate and lactate in serum, CSF and hippocampus. Open field and Morris water maze (MWM) tests were used to detect hippocampus-dependent cognitive function. Western blot and flow cytometry were conducted to detect neuronal apoptosis in primary hippocampal neurons.</p><p><strong>Results: </strong>In vivo, peripheral APN administration reversed surgery-induced reductions in serum APN expression and elevated levels of cerebral lactate, the ratio of lactate/pyruvate, TNF-α and IL-1β, thereby improving cognitive performance in MWM and Open Field tests. In vitro, APN at concentrations of 2 and 10 ng/ml dose-dependently reduced lipopolysaccharide-induced caspase 3 expression and p38 phosphorylation in neurons, inhibiting apoptosis.</p><p><strong>Conclusions: </strong>Cerebral hypometabolism is one of the pathogenic mechanisms of PND. APN shows its effects on regulating glucose metabolism to inhibit neuroinflammation and neuronal apoptosis in PND. And the underlying mechanism of APN should be investigated further.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":\" \",\"pages\":\"505-513\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002169\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002169","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

围手术期神经认知障碍(PND)是影响老年患者术后的重要并发症,目前改善其预后的有效干预措施有限。我们发现血清脂联素(APN)的降低和脑脊液(CSF)乳酸的升高参与了老年PND患者的病理生理过程。APN以其抗胰岛素抵抗特性而闻名。本研究进一步探讨APN对PND大鼠脑糖代谢的调节作用。将12月龄雄性Sprague-Dawley大鼠分为3组:假手术组、PND(脾切除术)组和PND+APN (50 mg/kg/d灌胃)组。采用ELISA、定量PCR和比色法分析小鼠血清、脑脊液和海马组织中肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)、丙酮酸和乳酸。采用Open field和Morris水迷宫(MWM)试验检测海马依赖性认知功能。Western blot和流式细胞术检测海马原代神经元的凋亡情况。在体内,外周APN给药逆转了手术诱导的血清APN表达降低和脑乳酸、乳酸/丙酮酸比值、TNF-α和IL-1β水平升高,从而改善了MWM和Open Field试验中的认知表现。在体外,浓度为2和10 ng/ml的APN剂量依赖性地降低了脂多糖诱导的神经元中caspase 3的表达和p38的磷酸化,抑制了细胞凋亡。脑代谢低下是PND的发病机制之一。APN通过调节糖代谢抑制PND的神经炎症和神经元凋亡。APN的潜在机制有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of peripheral adiponectin on perioperative neurocognitive disorder via regulation of glucose metabolism in aged rats.

Objective: Perioperative neurocognitive disorder (PND) is a significant complication affecting elderly patients after surgery, with limited effective interventions to improve its prognosis yet. We have found that decreased serum adiponectin (APN) and increased cerebrospinal fluid (CSF) lactate are involved in the pathophysiological process of PND in elderly patients. APN is known for its anti-insulin resistance property. In this study, we further explored the regulatory effects of APN on cerebral glucose metabolism in PND rats.

Methods: Twelve-month-old male Sprague-Dawley rats were divided into 3 groups: the sham, PND (splenectomy) and PND+APN (50 mg/kg/day intragastrically) groups. ELISA, quantitative PCR and colorimetric analysis were conducted to analyze tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), pyruvate and lactate in serum, CSF and hippocampus. Open field and Morris water maze (MWM) tests were used to detect hippocampus-dependent cognitive function. Western blot and flow cytometry were conducted to detect neuronal apoptosis in primary hippocampal neurons.

Results: In vivo, peripheral APN administration reversed surgery-induced reductions in serum APN expression and elevated levels of cerebral lactate, the ratio of lactate/pyruvate, TNF-α and IL-1β, thereby improving cognitive performance in MWM and Open Field tests. In vitro, APN at concentrations of 2 and 10 ng/ml dose-dependently reduced lipopolysaccharide-induced caspase 3 expression and p38 phosphorylation in neurons, inhibiting apoptosis.

Conclusions: Cerebral hypometabolism is one of the pathogenic mechanisms of PND. APN shows its effects on regulating glucose metabolism to inhibit neuroinflammation and neuronal apoptosis in PND. And the underlying mechanism of APN should be investigated further.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroreport
Neuroreport 医学-神经科学
CiteScore
3.20
自引率
0.00%
发文量
150
审稿时长
1 months
期刊介绍: NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool. The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works. We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信